
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Design Space Exploration for Adaptation
Planning in Cloud-based Applications

Master’s Thesis of

Tobias Pöppke

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf Reussner
Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek
Advisor: Dr. rer. nat. Robert Heinrich
Second advisor: Dipl.-Inform. Kiana Rostami

15. November 2016 – 15. June 2017

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 14.06.2017

. .
(Tobias Pöppke)

Abstract

With the widespread adoption of cloud computing and increasing interest by software
engineers to develop cloud-based applications, automatic adaptation which optimizes the
performance is becoming an important topic. However, this kind of automatic adaptation
of applications is an inherently complex task and there are limitations to fully automatic
adaptation where a human operator is required to step in. Previous work in this area has
neglected these limits and focused on enabling fully automatic adaptation, whereas we
propose an approach that integrates automatic adaptation, optimizing the application’s
performance, as well as an operator-in-the-loop. We do so by using, PerOpteryx, an ex-
isting design space exploration tool based on architectural run-time models and combine
it with a model-based adaptation planning and execution approach that allows for an
operator to take control of the execution if needed. We implement our approach and
evaluate it’s accuracy and scalability through a series of experiments, which show that
our approach is accurate and scales well for most cloud-based applications. Our approach
enables the use of automatic adaptation with a focus on performance optimization, while
simultaneously allowing operators to step in, which signi�cantly eases the development
and maintenance of cloud-based applications with good performance qualities.

i

Zusammenfassung

Durch die steigende Verbreitung von Cloud Computing und dem wachsenden Interes-
se von Software Ingenieuren, cloud-basierte Anwendungen zu entwickeln, wird die au-
tomatische Adaption zur Leistungsoptimierung dieser Anwendungen zu einem wichti-
gen Forschungsthema. Diese Art der Adaption einer Anwendung ist jedoch eine inhärent
komplexe Aufgabe mit Grenzen für eine vollautomatische Adaption, bei deren erreichen
ein menschlicher Bediener eingreifen muss. Vorherige Arbeiten auf diesem Gebiet haben
diese Grenzen bisher vernachlässigt und sich vornehmlich der Möglichkeiten zur vollau-
tomatischen Adaption angenommen. Wir stellen jedoch einen Ansatz vor, der die auto-
matische Adaption mit Fokus auf die Leistungsoptimierung mit einem Ansatz zur Bedie-
nerintegration vereint. Unser Ansatz verwendt PerOpteryx, ein existierendes Werkzeug
zur automatischen Entwurfsraumexploration, um Laufzeit-Architekturmodelle der An-
wendung zu optimieren und mit einem Modell-basierten Ansatz zur Adaptionsplanung
und -ausführung zu kombinieren, der Bedienereingri�e während der Adaptionsausfüh-
rung ermöglicht. Wir implementiern unseren Ansatz und evaluieren seine Korrektheit
und Skalierbarkeit mit einer Reihe von Experimenten, die zeigen, dass unser Ansatz kor-
rekt funktioniert und für die meisten cloud-basierten Anwendungen gut skaliert. Der vor-
gestellte Ansatz ermöglicht daher die Nutzung von automatische Adaptionsplanung mit
einem Fokus auf Leistungsoptimierung und erlaubt gleichzeitig einem Bediener bei Pro-
blemen einzugreifen. Dieser Ansatz verringert daher den Aufwand für die Entwicklung
und P�ege von cloud-basierten Anwendungen mit guten Leistungsmerkmalen.

iii

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Goals and Research Questions . 3
1.4 Contributions . 5
1.5 Structure . 5

2 Foundations 7
2.1 Component-based Architectural Models 7
2.2 iObserve . 8
2.3 PerOpteryx . 9

3 State of the Art 13

4 Running Example 15

5 Concept 17
5.1 Candidate Generation . 20

5.1.1 Extended Architectural Meta Model for the Cloud 20
5.1.2 Base Model Extraction . 23
5.1.3 Model Optimization . 28

5.2 Adaptation Calculation . 30
5.2.1 Systemadaptation Model . 31
5.2.2 Model Di�erence Calculation . 33

5.3 Adaptation Planning . 34
5.4 Adaptation Execution . 36

6 Implementation 39

7 Evaluation 43
7.1 Evaluation Design . 43
7.2 Base Model Extraction . 44

7.2.1 Accuracy . 44
7.2.2 Scalability . 49

v

Contents

7.3 Adaptation Calculation and Planning . 52
7.3.1 Accuracy . 52
7.3.2 Scalability . 58

7.4 Adaptation Execution . 59
7.4.1 Accuracy . 61
7.4.2 Scalability . 61

8 Conclusion 63
8.1 Limitations . 63
8.2 Future Work . 63

Bibliography 65

vi

List of Figures

2.1 iObserve approach to software evolution and adaptation [18] 9
2.2 The iObserve megamodel in the context of Enterprise Java. [18] 10

4.1 Coarse Structure of the Cloud-based Variant of CoCoME [17] 16

5.1 Overview of the steps in the iObserve MAPE loop. The arrows stand for
model transformations and the boxes represent speci�c models. 18

5.2 Overview of the extensions to the iObserve megamodel. The added or
extended elements are highlighted. (Based on Heinrich et al. 2017 [20]) . 19

5.3 The PCM Cloud Metamodel extension to the PCM. The ResourceContainer
metaclass is a PCM entity. 21

5.4 Example for the grouping of components by the types of resource con-
tainers they are allocated on. 25

5.5 The Systemadaptation model containing all available adaptation actions. 32

6.1 The sequence diagram showing the transformation of the model and the
execution of the design space exploration. 40

7.1 The initial allocation model of scenario 1. 46
7.2 The resulting allocation model of scenario 1 after the transformation. The

names of the resource containers have been shortened for better readability. 46
7.3 The initial allocation model of scenario 2. 47
7.4 The resulting allocation model of scenario 2 after the transformation. The

names of the resource containers have been shortened for better readability. 48
7.5 The initial allocation model of scenario 3. 49
7.6 The resulting allocation model of scenario 3 after the transformation. The

names of the resource containers have been shortened for better readability. 50
7.7 Results of the scalability measurements for the base model extraction. . . 51
7.8 The resulting adaptation plan for scenario 1. 55
7.9 The resulting adaptation plan for scenario 2. 56
7.10 The resulting adaptation plan for scenario 3. 58
7.11 Results of the scalability measurements for the adaptation calculation. . . 59
7.12 Results of the scalability measurements for the adaptation execution. . . 62

vii

List of Tables

7.1 Times measured in milliseconds for scaling the number of allocation con-
texts. 53

7.2 Times measured in milliseconds for scaling the number of instance types. 53
7.3 Times measured in milliseconds for scaling the number of allocation con-

texts and instance types simultaneously. 53
7.4 Times measured in milliseconds for scaling the number of adaptation ac-

tions when planning the adaptations. 60
7.5 Times measured in milliseconds for scaling the number of adaptation ac-

tions when executing the adaptations. 60

ix

1 Introduction

1.1 Motivation

In recent years, cloud computing has evolved from a hype to an important model to con-
sider when building complex software systems. The NIST de�nition of cloud computing
[27] de�nes cloud computing as "a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of con�gurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management e�ort or service provider interaction."

There are many advantages to adopting a cloud-based architecture for software sys-
tems. One of them is the possibility for a customer to provision or release resources,
generally through a self-service process. The cloud provider ensures that the requested
resource is available for the customer in a matter of minutes or seconds, which creates
the impression of an unlimited supply of resources. An application can therefore be de-
signed as if there were no limitations to the available computing resources. Because the
resources are shared with other customers, they are also more evenly utilized.

This rapid provisioning, or rapid elasticity [27], of computing resources enables a pay-
ment model that is based on the actual resource usage of a customer. This pay-as-you-go
payment model is used by most cloud providers and relieves engineers from up-front in-
vestments in an application’s hardware and software infrastructure. The engineer only
has to pay for the resources she uses and can release them at any time, if necessary, to re-
duce costs. Moreover, the needed infrastructure does not necessarily have to be planned
in detail to �t the needs, because it can be adjusted as needed without additional costs
other than those charged by the cloud provider.

Most importantly, rapid elasticity enables software engineers to react to performance
issues that arise during operation. If a performance bottleneck is detected, additional
cloud resources can be acquired in a short time period and integrated into the software
system to mitigate the issue. If the performance bottleneck was triggered by a tempo-
rary external event, like, for example, a commercial airing on television, the additional
resources can again be unprovisioned after the e�ects of the event have worn o�. Thus,
with rapid elasticity, it is possible to adjust the performance qualities of a cloud-based
application at run time.

Another important aspect of cloud computing is the pooling of resources under the
maintenance and management of the cloud provider. This enables companies or individ-
uals to solely focus on the software development process without needing to manage,
maintain and secure the, potentially complex, server infrastructure. Because the manage-
ment of such infrastructures comes with many di�culties and requires a lot of expertise,
it may be bene�cial and more cost e�cient to hand this task over to a cloud provider.

1

1 Introduction

These advantages lead to an increased usage of the services of cloud providers and
other third parties. Those services are not necessarily under the control of the software
engineers who consume them and include the infrastructure services of cloud providers,
as well as software maintained by third parties that can be accessed via the Internet or are
included in the cloud providers services. They expose their interfaces to the consumers,
which can, in turn, use them to execute speci�c computation tasks or allocate resources.

According to the NIST de�nition of cloud computing, there are three service models.
The Software as a Service (SaaS) service model enables a consumer to use an applica-
tion, which is managed completely by the cloud provider. The consumer does not have
any other means of accessing the service than through the provided interfaces. Another
service model, Platform as a Service (PaaS), enables the consumer to deploy her own ap-
plication onto a provided platform, which is again managed by the cloud provider. In this
model, the consumer may have control over some speci�c con�guration settings of the
environment, also limited by the cloud provider’s interfaces. In the Infrastructure as a Ser-
vice (IaaS) service model, the consumer can acquire cloud resources and use it to deploy
whatever applications she wants. Only the underlying infrastructure is managed by the
cloud provider.

Although cloud computing brings with it a variety of advantages for software engi-
neers, it also introduces challenging problems which are described further in the follow-
ing section.

1.2 Problem Statement

The problems that arise by using cloud services are [18, 19]: (I) For SaaS and PaaS ser-
vices, engineers only have a limited or no view on the inner workings of those services
and their infrastructure. Incorporating such services into an application running on an
IaaS service can free engineers from implementing commonly needed functionality, like
message queues, but it also introduces a dependency on those services. If the service
provider chooses to shut down the service or if the service does no longer satisfy the
performance requirements, the application has no way of preventing it. Instead it is nec-
essary to adapt the application to the new circumstances. Such changes can normally not
be foreseen in advance and have to be dealt with at run time.

(II) The cloud provider may decide that, in order to improve the utilization of hardware
resources, it is necessary to move parts or the whole application to another location inside
the data center or even into a completely di�erent data center. This may in turn lead to
a decreased performance of the application, for example higher response times. There-
fore, cloud-based applications have to be able to adapt to such changes in their execution
environment.

(III) Cloud-based applications are inherently more complex than monolithic applica-
tions because of the distributed nature of cloud computing. They have to be designed
to cope with distributed application components as well as with data that is distributed.
Most cloud-based applications also have to satisfy performance constraints while being
cost-e�cient at the same time. Due to the complexity of the applications, it is di�cult to
�nd a deployment that best satis�es all of these constraints.

2

1.3 Goals and Research Questions

(IV) External events may impact the application as well. Natural disasters, economic
di�culties or just a successful sales campaign may overburden the application and lead to
decreased performance. Such events can also not be foreseen during the development of
a cloud-based application. Moreover, they can not be deducted by only using monitoring
data and require additional information from outside the system.

These problems not only raise the di�culty of initially developing a cloud-based system
but also limit the applicability of fully automatic adaptation. Especially the problems
described in (IV) make fully automatic adaptation a nearly impossible task because of
the number of possible scenarios that have to be considered for comprehensive decision
making. However, it is imperative for a cloud-based application to adapt to changes in
it’s execution environment.

This means, that it is necessary to �nd a way to automatically adapt a cloud-based
application, while at the same time leaving room for a human operator to control and
in�uence the process if necessary. This ensures, that external events are considered dur-
ing the adaptation process as well as other information that is normally not available to a
fully automatic approach, such as information about an expected increase in the number
of users.

When confronted with a problem of category (I), it may also become necessary to ini-
tiate development activities to adapt the application to the changed interfaces or to use
a di�erent service. Those activities belong to the realm of software evolution, which we
de�ne as a longer sequence of modi�cations to a software system over its life-time which
is manually applied by software engineers (cf. [24]). Such tasks can not be performed in a
fully automated way, and must therefore be treated separately. But software evolution is
intertwined with software adaptation, because software evolution in�uences the possibil-
ities for adaptation and the adaptation process delivers information about the problems
that can only be solved by evolving the application. It is also possible that a performance
bottleneck has the short-term solution of adding more resources, but needs to be tackled
by software engineers to remove the bottleneck in the long run.

These processes should therefore rely on the same basis of data and keep it updated,
so that each process can use the newest information about the system and not rely on
outdated data, such as models that do no longer re�ect the actual state of the application.

The combination of automatic adaptation with an operator-in-the-loop for cloud-based
applications is an open problem that is being adressed in this thesis. We will focus on
adaptations for performance related issues in an IaaS environment, namely (de-)allocating
virtual machines, (un-)deploying components, migrating and replicating components.
The goals and research questions are described in detail in the following section.

1.3 Goals and Research Questions

Because of the problems mentioned before and the complexity introduced by cloud-based
applications, this thesis explores the possibilities for automatic adaptation planning and
execution with an operator-in-the-loop approach. Our approach is based on architectural
run-time models as the basis for adaptation planning and execution, because they can be
understood by humans and can also be used during the software evolution process. We

3

1 Introduction

focus on cloud-based applications that use the IaaS service model, because in the context
of PaaS, the control over performance related adaptations is mainly in the hands of the
cloud provider.

We use the Goal Question Metric (GQM) process [2] to develop our approach. This
process directs the development towards ful�lling speci�c goals in a measurable way. To
do so, GQM uses a top down approach by �rst de�ning goals on a conceptual level. These
goals are further re�ned by deriving research questions from them, which in turn lead to
the de�nition of metrics. The goals, questions and metrics form the GQM plan. As the
�rst part of this plan, we de�ne the goals of this thesis as follows.

G-1 Enable automatic adaptation planning in cloud-based applications for performance
issues.

G-2 Enable automatic execution of adaptations mitigating performance issues in cloud-
based applications.

The research questions derived from G-1 re�ect the steps performed by our proposed
approach and are closely related to the modules that were implemented.

RQ-1.1 Can architectural run-time models be used to plan accurate performance improv-
ing adaptation actions?

RQ-1.2 Is the derivation of an adaptation plan possible in a scalable way?

For RQ-1.1, we want to show the accuracy of the approach to derive adaptation plans
that improve the application’s architecture in a given scenario with respect to several
goals like performance and costs. The reason for triggering the adaptation planning is
usually a degradation in the application’s quality-of-service properties because of inter-
nal or external events. Therefore the adaptation planning has to derive a target archi-
tecture that improves these properties again or at least prevents further degradation. We
want to make sure that an improved architectural run-time model can be transformed into
concrete steps to adapt the applications current architecture into the derived target archi-
tecture. This is necessary, because the planning process would not be sensible, if there is
no possibility to know the steps necessary to actually adapt the current architecture.

The question RQ-1.2 is concerned with the scalability of the adaptation planning. It is
necessary for a cloud-based application to react to changes in the execution environment
in a timely manner. If a central system component is no longer available, this may lead to
an unavailable application, which in turn can cause a violation of service level agreements
(SLAs) or other serious problems for the consumers of the application. It is therefore
necessary to have an adaptation planning routine, that is able to minimize the time needed
to deal with such problems.

The second goal, G-2, relates to the approach’s ability to not only plan an adaptation,
but also to execute it in an automated way. The following research questions are derived
from this goal.

RQ-2.1 Can the adaptation execution be performed automatically for a complex cloud-
based application?

4

1.4 Contributions

RQ-2.2 How scalable is the adaptation execution for a complex cloud-based application?

RQ-2.1 explores the accuracy of our approach to execute the derived adaptation plans
in an automatic way. An operator might not always be available, or the operator does not
have the required knowledge to make the decisions needed to execute an adaptation plan.
Therefore the adaptation plan should be executed as automated as possible and guide the
operator, if a problem arises. For a complex cloud-based application, incorrect execution
of the adaptation plan could lead, for example, to limited availability of the application or
a loss of functionality.

As with RQ-1.2, the research question RQ-2.2 is concerned with the scalability of our
approach. It is necessary for the adaptation to be executed in a timely manner, to minimize
the disruption to the application caused by such an adaptation.

The metrics and methods used to quantify these research questions are detailed in Sec-
tion 7.

1.4 Contributions

This thesis contributes an approach to integrate automatic adaptation planning through
design space exploration with an operator-in-the-loop. To enable this integration, the
following contributions are provided in this thesis:

• A model for representing the available computing resources a cloud provider o�ers
is presented.

• A model for representing actions in an adaptation plan is presented.

• The iObserve megamodel is extended with the steps for adaptation planning and
execution.

• An algorithm for deriving degrees of freedom from an architectural run-time model
is developed.

• Design space exploration is applied to architectural run-time models in the iObserve
context and an algorithm to derive execution steps is developed.

• An algorithm to execute the adaptation steps is developed, including the possibility
for a human operator-in-the-loop to interact with it.

1.5 Structure

The remainder of this thesis is structured as follows. In Section 2 an overview of the tools
and mechanisms that will be used in this thesis is given and in Section 3 a survey of the
current state of the art is conducted. In Section 4, a running example is introduced, which
will be referenced throughout the thesis and is used to evaluate our approach. Section
5 introduces the concept of the approach implemented during this thesis. In Section 6,

5

1 Introduction

the details of the implementation of our approach are explained. The evaluation of our
approach can be found in Section 7 and Section 8 concludes this thesis with an overview
of the limitations of our approach and a survey of future work.

6

2 Foundations

This section gives an overview of the foundations and tools used during the thesis. We
�rst introduce the concept of component-based architectural models in Sec. 2.1. Because
a big part of this thesis consists of the modi�cation and extension of existing tools, this
section also gives an overview of them. The iObserve tool serves as the basis for this thesis
and is introduced in Sec. 2.2. To conclude, the PerOpteryx tool for automated architecture
optimization is introduced in Sec. 2.3.

2.1 Component-based Architectural Models

During the development and maintenance of a software system, many decisions have to
be made that together describe the architecture of a system as de�ned by Taylor et al.
(2009, [36]). We use this de�nition during the thesis, although there is no commonly
agreed upon de�nition of a software architecture.

So�ware Architecture (Taylor et al. 2009 [36]) A software system’s architecture is the set
of principal design decisions made about the system.

As principal design decisions, the authors mention the structure of the system, deci-
sions about functional behavior, non-functional properties or the interaction of compo-
nents as examples. While this de�nition of software architecture does not require the
documentation of principal design decisions, it is bene�cial for the description of an ar-
chitecture to be documented in a speci�c artifact. These artifacts may be documented
in natural language, UML diagrams or in formal models such as the Palladio Component
Model (PCM) [4, 32]. The Palladio Component Model describes architectures in the con-
text of component-based software engineering. A component is described by Szyperski
et al. (2002, [35]) as a ünit of composition with contractually speci�ed interfaces and ex-
plicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties.D̈uring this thesis, we employ the PCM to
model the architecture of software systems and it’s terms to describe the di�erent parts
of an application.

The composition and deployment of components is modeled with the PCM by employ-
ing di�erent sub-models for speci�c aspects of the system. The basic sub-model is the
Repository model, which contains all components the system consists of, as well as their
provided and required interfaces. All methods de�ned in the provided interfaces may also
have a Service E�ect Speci�cation (SEFF) or the extended version, a Resource Demanding
Service E�ect Speci�cation (RDSEFF) associated with them. A SEFF describes the abstract

7

2 Foundations

internal behavior of a method and an RDSEFF can be used to additionally associate re-
source demands with a method. This information can be leveraged for analyzing quality
properties of a given model.

The System model contains information about the composition of a speci�c system and
uses the components de�ned in the Repository. The Repository, however, does not have
any information about which system uses it’s components and may be shared by many
systems. The components are encapsulated in the system by so called AssemblyContexts.
Another sub-model is the Resource Environment model, which provides information about
the execution environment and available Resource Containers. A Resource Container is a
server, where components can be deployed and executed and they provide hardware spec-
i�cations like the processing speed of this server. To describe the allocation of components
onto resource containers, the PCM provides the Allocation model, which connects Assem-
blyContexts to the ResourceContainers they are deployed on. This connection is done by
the AllocationContext model elements. Additionally the PCM is able to model the usage
of a system by employing it’s Usage model.

2.2 iObserve

The idea of the iObserve approach [18] is to tackle the problems that arise when adapting
and evolving cloud-based, distributed software systems. Such systems are subject to con-
stant changes in their execution environment which are not easy, or not possible, to fore-
see during their development. Therefore iObserve tackles these challenges by employing
a MAPE (Monitor, Analyze, Plan, Execute) control loop to causally connect the running
application with an architectural runtime model representation. This representation can
then be used either by humans for the evolution of the system or by the planning and ex-
ecution steps to automatically adapt the application’s architecture. Because the iObserve
approach considers the adaptation and evolution of software systems to be interwoven
and interdependent these as shown in Fig. 2.1, it uses one architectural runtime model
for both tasks.

The central model to connect both the design time and the run time model is the run-
time architecture correspondence model (RAC). The RAC is shown in Fig. 2.2, which
depicts the iObserve megamodel. The megamodel shows the relationships between the
di�erent models and artifacts used by iObserve. The models are depicted as boxes and
transformations are shown by solid line arrows between the models. The dotted line
arrows indicate a conforms to relationship between models and metamodels, and an in-
stance of relationship between gathered data and it’s data types.

In iObserve, an application is instrumented with so called monitoring probes. These
monitoring probes are generated or created by hand and conform to the Instrumenta-
tion Aspect Language (IAL). These monitoring probes generate monitoring records that
conform to the Instrumentation Record Language (IRL). These monitoring records are
aggregated an re�ned by iObserve and used to update the architectural runtime model,
which represents the current state of the application as an instance of the Architecture
Meta-Model.

8

2.3 PerOpteryx

Figure 2.1: iObserve approach to software evolution and adaptation [18]

The iObserve megamodel uses two dimensions to characterize the included models,
the design-time vs. run-time and the model vs. implementation level dimensions. For
design time, the �gure shows the relationship between the monitoring approach used,
the architecture model and the corresponding code generation through transformations.
The run-time side shows the mapping of monitoring data to their corresponding elements
in the RAC which also relate to implementation artifacts.

Currently the iObserve approach only implements the Monitoring and Analyze phase
of the MAPE loop. It uses the Palladia Component Model (PCM) [5] as the architec-
ture meta-model to describe both the architectural model and the architectural run-time
model.

2.3 PerOpteryx

PerOpteryx [22, 26] is a tool designed to automatically optimize component-based ar-
chitectural models with respect to performance, reliability and cost of the architecture.
It relies on the Palladio Component Model (PCM) to model the architecture of software
systems and their costs. It relies on the PCM analysis tools like solvers for Layered Queue-
ing Networks (LQN) [13, 5] or simulators to predict the performance of an architecture
model.

It uses an initial architectural model as the starting point for the automatic generation
of new architecture candidates, which are generated by employing an evolutionary algo-
rithm. The candidates are then analyzed to get their properties with respect to the given
quality criteria and Pareto-optimal [10] candidates are selected to be used during the next
iteration or as the output of the process. This process relies on exploring the design space

9

2 Foundations

Figure
2.2:The

iO
bserve

m
egam

odelin
the

contextofEnterprise
Java.[18]

10

2.3 PerOpteryx

that is spanned by the degrees of freedom of the model. The goal of this exploration is to
�nd a Pareto-optimal architecture for the system that satis�es the given quality criteria as
well as optimizes performance, reliability and cost. Because of the multicriterial nature of
this problem, a metaheuristic-based approach is used with an evolutionary optimisation
algorithm. Originally, this tool was intended to be used by software architects at design
time to automatically optimize architectural models.

PerOpteryx de�nes several models. One model is the Desing Decision model, which
de�nes the available degrees of freedom for a speci�c PCM instance. We only use two
of those degrees of freedom for our approach and will introduce them shortly. The �rst
degree of freedom we employ is the AllocationDegree, which describes the possible allo-
cations of one AssemblyContext and it’s encapsulated component onto a set of resource
containers. During the optimization, the component is allocated onto one of the possible
resource containers according to the heuristics employed by the evolutionary algorithm.

The second degree of freedom that is relevant for our work is the ResourceContain-
erReplicationDegree. This degree of freedom allows the replication of one resource con-
tainer in a speci�ed range of replications. To this end, the resource container is referenced
in the degree and a lower and upper bound for the number of replicas has to be speci�ed.
During the optimization, the evolutionary algorithm chooses a number of replicas within
that range for a speci�c candidate and evaluates the candidate.

Another model that is de�ned by PerOpteryx is the Cost model, which is also used dur-
ing this thesis. This model provides information about the costs of processing resources
de�ned in the Resource Environment mode. These costs are used in conjunction with the
QMLDeclarations model, which describes the quality criteria that have to be optimized.
If the costs are de�ned in the QMLDeclarations model as a relevant criterion, the costs of
each candidate will be analyzed and taken into account for further processing.

11

3 State of the Art

Our approach has many similarities with the CloudMF Framework [11, 25]. CloudMF
aims to enable the automatic adaptation of cloud-based applications at run-time using
CloudML [12] models to model the application. The models are kept in a causal connec-
tion with the deployed system by a models@run-time based [6, 30] engine. However, the
CloudML modelling language is only used to model the deployment of the application
and does not include additional information that may be useful for adaptation. Speci�-
cally, the used models for the adaptation planning are decoupled from the models used for
the development of the application. This inhibits software evolution processes because
the evolved models can not be transferred directly onto the running application and vice
versa.

SimuLizar [3] uses performance analysis for self-adaptive systems to enable the analy-
sis of adaptation phases during scaling processes of the system. This approach is based on
design-time architectural models and is not designed to leverage run-time information.
It is also limited to analyzing the models and therefore provides only limited utility for
adaptation planning compared to PerOpteryx.

Metzger et al. [29] introduced FCORE, a model-based approach for the self-adaptation
of cloud-based systems. FCORE utilizes run-time feature models and combines them
with goal models to derive adaptation actions. All adaptation actions are consolidated
to achieve a coordinated adaptation plan. This approach lacks �exibility because it is
constrained to the features de�ned at design time and is di�cult to use for systems that
do not have many feature sets to choose from.

An approach for the design space exploration of cloud-based applications is provided
by Frey et al. [14]. This approach is an evolutionary algorithm speci�cally designed for
cloud-based applications and uses cloud deployment options to de�ne it’s search space
and the results of it’s optimization. It is tightly integrated with CloudMIG [15], an ap-
proach for the semi-automatic migration of software to the cloud. This approach focuses
on the evolutionary algorithm in a cloud environment, but is not concerned with the
automatic adaptation of cloud-based applications.

13

4 Running Example

As a running example throughout the thesis and for evaluating our approach, we will
use the Common Component Modelling Example (CoCoME). CoCoME is a demonstrator
for a component based architecture. It is an implementation of the inventory and sales
management system of a �ctional supermarket chain. There are multiple variants of Co-
CoME with a cloud variant also available. The cloud variant is available as a PCM based
design time model which makes it easy to enrich it with run-time information gathered
by iObserve. The application can therefore be used to evaluate the approach developed in
this thesis. CoCoME is a typical three-tiered application with a presentation tier, the busi-
ness logic tier and the data tier. The presentation tier consists of two components. The
PickupShop component implements a shop system, where a customer can order products
online to later pick them up in a selected shop. The Web component implements the ad-
ministrative interface for store and enterprise managers as well as the cash desk interface
for cashiers.

CoCoME’s business tier consists of the TradingSystem::CashDeskLine component, which
implements the logic for the cash desks and the TradingSystem::Inventory component
which is responsible for all other administrative tasks and the booking of sales. The
data tier is encapsulated in the ServiceAdapter component which is deployed on its own
database server. All other components are run either on an enterprise server, responsible
for all enterprise related operations, or on a store server. The store server is responsible
for store related operations and also holds the The coarse structure of the cloud variant
of CoCoME can be seen in Fig. 4.1.

15

4 Running Example

E
xtern

al::B
an

k

«com
ponent»

P
icku

p
S

h
o

p

«com
ponent»

W
eb

«com
ponent»

:S
erviceA

d
ap

ter
«w

eb service»
W

eb
S

ervice::In
ven

to
ry

«com
ponent»

T
rad

in
g

S
ystem

::In
ven

to
ry

«com
ponent»

T
rad

in
g

S
ystem

::C
ash

D
eskL

in
e

«w
eb service»

W
eb

S
ervice::C

ash
D

esk

IB
ank

ILoginM
anager

IU
serM

anager
IA

uthenticator

IE
nterpriseM

anager

IS
toreM

anager

IE
nterpriseR

eporting

S
erviceA

dapter
IR

eporting
IS

toreInventoryM
anager

A
ccountS

aleE
vent

IS
toreInventory

IC
ashD

eskM
odel

IC
ardR

eaderM
odel

IU
serD

isplayM
odel

IP
rinterM

odel
IB

arcodeS
cannerM

odel
IE

xpressLightM
odel

IC
ashB

oxM
odel

IC
ashD

esk

IC
ardR

eader

IU
serD

isplay
IP

rinter
IB

arcodeS
canner

IE
xpressLight
IC

ashB
ox

Figure
4.1:Coarse

Structure
ofthe

Cloud-based
VariantofCoCoM

E
[17]

16

5 Concept

To be able to explore the design space of a particular architecture for performance op-
timization, it is necessary to �rst be able to model the application’s architecture in a
way that accurately represents performance relevant characteristics. In particular, it is
necessary to model the deployment and distribution of the application’s parts and be
able to update the model if a change in the environment occurs. Performance relevant
changes in cloud-based applications that happen at runtime are described by Heinrich
et al. (2016, [18]) as workload characterization changes, migrations, (de-)replications and
(de-)allocations. Another requirement is the ability to model the application’s deploy-
ment in a way that can be used for operator-in-the-loop adaptations. Moreover, the used
architectural model has to be usable for analyzing the performance of an architecture.

Developing a framework which covers all these changes and can update an architec-
tural runtime model when such changes appear is outside the scope of this thesis. There-
fore we decided to implement our approach as an extension of iObserve, because it is able
to provide a component-based architectural runtime model that is causally connected to
the application as the basis for the design space exploration and adaptation planning. This
enables model based performance analyses and proactive adaptation planning based on
models of user behavior which can be used with iObserve. Additionally it facilitates the
inclusion of an operator-in-the-loop, because those models are easier to understand for
humans than monitoring data. Moreover, it already implements the basic functionalities
of the MAPE loop, which is a widely adopted model for feedback loops.

The main idea of our approach is to extend the current version of iObserve and add
the planning and execution steps to it’s MAPE loop. Currently, iObserve implements the
instrumentation and monitoring of cloud-based applications, as well as the processing and
integration of those observations into an architectural runtime model. This ensures the
causal connection between the application and the runtime model. This runtime model
can then be used as the input to the planning and execution steps.

Alternative approaches to causally connect an application with a runtime model like
reusing design-time models (e.g. [7, 30] are not suited, because they don’t support component-
based architectures or do not update the model structure based on runtime information.
As pointed out by Heinrich et al. (2016, [18]), the iObserve approach is the only approach
which satis�es our requirements.

Because iObserve is based on the PCM, the existing tooling for PCM models can be
used to analyze the runtime model for performance bottlenecks. This analysis can then
again be used to optimize the architecture and derive a candidate model, as shown in Fig.
5.1. The candidate model is used as the input to the adaptation planning step. In this step,
the concrete actions that are necessary to transform the current application’s architecture
into the target architecture, represented by the candidate model, are planned.

17

5 Concept

Extended
Architectural

Model

TRuntime Update
Candidate

Architectural
Runtime Model

TCandidateGeneration

System Adaptation
Model

TAdaptationCalculation

Ordered System
Adaptation Model

TAdaptationPlanning

Instrumented System

TAdaptationExecution

Figure 5.1: Overview of the steps in the iObserve MAPE loop. The arrows stand for model
transformations and the boxes represent speci�c models.

The resulting adaptation plan is then used as input for the execution step. In this step
the actions are executed on the application and transform it’s architecture into the target
architecture. This in turn results in the generation of monitoring events that are again
sent to iObserve and integrated into the architectural runtime model.

Because iObserve uses a model-based approach to integrate the architectural models
used in development and operations, we use the same approach and extend the iObserve
megamodel. The megamodel describes the connections between individual models, meta-
models and transformations in the iObserve context. Our extensions to the megamodel
are highlighted in Fig. 5.2 and correspond to the stages in the MAPE loop. The models
and metamodels are shown as rectangles in the megamodel with the transformations be-
tween them depicted as solid line arrows. Diamonds depict multiple models as input or
output of a transformation. Dotted lines point out the conformity to a metamodel or an
instance of relationship between operational data and their development data type.

In this thesis we implement the TCandidateGeneration transformation, which uses three
models as it’s input. The �rst model is the Extended Architectural Runtime Model, gen-
erated by iObserve, which represents the current state of the application. This model
conforms to the Extended Architecture Meta Model which extends the current meta model
by adding the elements needed to represent a cloud-based application. The Cloud Pro-
�le Model is a part of the Extended Architecture Meta Model and is used to describe the
available cloud resources, which have to be considered during candidate generation. The
Cloud Pro�le Model is therefore used in conjunction with the Degree of Freedom Model
to model the degrees of freedom. The degrees of freedom span the design space within
which the optimization is performed.

During the candidate generation, multiple candidates are being generated and each one
is evaluated for it’s performance properties through theTPerformance transformation. Once
a suitable candidate is found, the TAdaptationCalculation transformation calculates the di�er-
ences between the current architectural runtime model and the target model generated by
the candidate generation. These di�erences are then rearranged by the TAdaptationPlanning
transformation. This transformation is necessary to ensure that the adaptation actions
are ordered correctly.

18

Ex
te

n
d

e
d

A

rc
h

it
ec

tu
ra

l
R

u
n

ti
m

e
 M

o
d

e
l

C
lo

u
d

 P
ro

fi
le

M
o

d
el

D
e

gr
e

e
o

f
Fr

ee
d

o
m

M
o

d
el

Sy
st

e
m

 A
d

a
p

ta
ti

o
n

M

o
d

elT
 A

d
ap

ta
ti

o
n

Ca
lc

u
la

ti
o

n

O
rd

e
re

d
 S

ys
te

m

A
d

a
p

ta
ti

o
n

 M
o

d
e

l

T
A

d
ap

ta
ti

o
n

Pl
an

n
in

g

C
a

n
d

id
a

te

A
rc

h
it

ec
tu

ra
l

R
u

n
ti

m
e

 M
o

d
e

l

Sy
st

e
m

 A
d

a
p

ta
ti

o
n

A

ct
io

n
 S

cr
ip

ts

T
A

d
ap

ta
ti

o
n

Ex
ec

u
ti

on

Ex
te

n
d

e
d

A

rc
h

it
ec

tu
re

 M
e

ta

M
o

d
el

R
A

C

A
gg

re
g

at
ed

 &

R
e

fi
n

e
d

 E
ve

n
ts

A
rc

h
it

ec
tu

ra
l M

o
d

e
l

M
o

n
it

o
ri

n
g

D
a

ta

Im
p

le
m

e
n

ta
ti

o
n

A

rt
if

ac
ts

A
p

p
lic

a
ti

o
n

Fr

a
m

e
w

o
rk

s

A
sp

e
ct

Im

p
le

m
e

n
ta

ti
o

n

A
O

P
 F

ra
m

e
w

o
rk

R
e

co
rd

 T
yp

e

Im
p

le
m

e
n

ta
ti

o
n

R
e

co
rd

 T
yp

e
 M

o
d

e
l

IR
L

In
st

ru
m

e
n

ta
ti

o
n

M

o
d

el

IA
L

<<
co

n
fo

rm
s

to
>>

T R
e

co
rd

<
<

co
n

fo
rm

s
to

>
>

<<
in

st
an

ce
s

o
f>

>

T A
p

p

<<
co

n
fo

rm
s

to
>>

<<
co

n
fo

rm
s

to
>>

T M
o

n
it

o
ri

n
g

T
R

u
n

-t
im

e
U

p
d

at
e

T P
re

p
ro

ce
ss

D
e

ve
lo

p
m

e
n

t
O

p
er

at
io

n
s

Model Level Implementation
Level

P
e

rf
o

rm
an

ce

R
e

su
lt

s

P
ri

va
cy

 R
es

u
lt

s
T P

ri
va

cy

T P
er

fo
rm

an
ce

T P
ri

va
cy

T P
er

fo
rm

an
ce

T
C

an
d

id
at

e

G
e

n
er

at
io

n

Fi
gu

re
5.

2:
O

ve
rv

ie
w

of
th

e
ex

te
ns

io
ns

to
th

e
iO

bs
er

ve
m

eg
am

od
el

.
Th

e
ad

de
d

or
ex

te
nd

ed
el

em
en

ts
ar

e
hi

gh
lig

ht
ed

.
(B

as
ed

on
H

ei
nr

ic
h

et
al

.2
01

7
[2

0]
)

19

5 Concept

Once the adaptation actions are available in the correct order, the TAdaptationExecution
transformation generates parameterized action scripts and executes them in the given
order. If any actions are found that can not be executed automatically, the operator is
involved during this step to manually perform the necessary actions.

As a general guideline to our decision processes, which are detailed in the following
sections, we chose to employ approaches that are as independent of the used technologies
and applications as possible. This improves the portability of our approach and ensures,
that even when exchanging some components, the overall approach does not need to
change.

In Section 5.1 we �rst describe the details of the candidate generation and the adapta-
tion calculation is detailed in Section 5.2. The adaptation planning is explained in Section
5.3 and we conclude this chapter by describing the adaptation execution in Section 5.4.

5.1 Candidate Generation

The generation of candidates through design space exploration is at the heart of our ap-
proach and is further divided into two steps, Base Model Extraction and Model Optimiza-
tion that are executed sequentially. This separation is necessary, because the input model
needs to be preprocessed before the design space exploration can be executed, as detailed
in Sec. 5.1.2. We introduce the PCM Cloud Metamodel as an extension to the PCM ar-
chitectural meta model in Section 5.1.1, which is used in the Base Model Extraction step
described in 5.1.2. The central step is the candidate generation and optimization which is
described in Section 5.1.3. During this step, new candidates are generated and analyzed
for their performance and cost properties. If a candidate with better performance and
costs than the current one is found, it is used as input to the Adaptation Calculation step,
which is described in Section 5.2.

5.1.1 Extended Architectural Meta Model for the Cloud

In this section we propose an extension of the PCM as the architectural meta model used
in iObserve. The architectural meta model that is needed for our approach has to provide
information about the used types of virtual machines (VMs) and their hardware speci�ca-
tions. This is necessary because the candidate generation has to generate candidates that
use valid VM instance types, otherwise the candidate can not be deployed correctly or the
performance analyses on the model become invalid. This is because in a cloud context,
most cloud providers only o�er speci�c hardware con�gurations that can not be changed
by the consumers.

In addition, the meta model has to provide information on how to access an already de-
ployed VM, for example to (de-)allocate or migrate deployed components. Without this
information, it would not be possible to adapt the running system without human inter-
action during the execution step. This also includes another requirement, the ability to
provide information on how to access the cloud provider for acquiring and terminating
VMs. These requirements are inspired by the CloudML meta model [11]. Another impor-
tant information is the pricing of the available instance types to be able to consider the

20

5.1 Candidate Generation

costs of a deployment while analyzing candidate models. This information therefore has
to be present to assess the quality of a candidate architecture.

There are several possibilities to satisfy these requirements. One is to use a di�er-
ent meta model that is speci�cally designed for the purpose of handling cloud-based de-
ployments, for example the one proposed in [12]. This solution has the bene�t of being
speci�cally tailored to the needs of a cloud-based application, but is also restricted to this
one purpose. Moreover, this approach loses the bene�ts of an already matured tooling
ecosystem, like the one PCM provides with it’s tools for performance analysis and model
optimization.

PerOpteryx also already provides a cost model for the optimization. This model can
however only be used for the cost aspect and it associates costs with single processing
resources. For our approach this could be used, but it would be tedious to maintain the
cost model for every used processing resource, when there is only a limited number of
VM types available. Therefore, to increase the maintainability, we propose to associate
the costs with a speci�c VM type.

The PCM, the architectural meta-model used in iObserve, was developed with an on-
premise background in mind and does not natively satisfy all the requirements for cloud-
based applications. Thus, we propose an extension to the PCM that includes the infor-
mation needed to model a cloud-based application. The proposed PCM Cloud Metamodel
is shown in Figure 5.3. Through this approach we can leverage the existing tooling for
the PCM while still being able to provide a description of a cloud-based application that
includes the information needed to plan and execute adaptations of it.

Figure 5.3: The PCM Cloud Metamodel extension to the PCM. The ResourceContainer
metaclass is a PCM entity.

We extend the PCM in a non-invasive way, as described by Strittmatter et al. (2015)
[34], and de�ne the new ResourceContainerCloud as a subclass of the ResourceContainer
type in the PCM. The original ResourceContainer of the PCM is extended to include the

21

5 Concept

username and password attributes, which describe the login credentials that should be
used when logging into the resource container to perform an adaptation task. This is
used to access the resource container for performing (de-)allocation or migration actions
and can be provided to the operator in case an adaptation action can not be performed
automatically.

Moreover, we assign each container the attribute groupName which re�ects the name
of the allocation group this container belongs to. The concept of allocation groups is
detailed in Section 5.1.2. A container’s groupName is used to perform adaptation actions
on a group of resource containers on which the same components are allocated. This is
useful to be able to execute an adaptation action for a complete group in parallel, therefore
decreasing the time it takes for the adaptation to complete.

Additionally, each container is assigned an instanceType which connects the Resource-
ContainerCloud to the newly introduced Cloud Pro�le metamodel. The instanceType rep-
resents a speci�c type of virtual machine a cloud provider o�ers to it’s customers. This
type is represented by the VMType metaclass, which provides information about the hard-
ware speci�cations of a virtual machine type as they are speci�ed by the cloud provider,
which is used in the optimization process to predict the performance of a candidate. It
also includes information about the location of the virtual machine, as well as pricing
information, through its superclass CloudResourceType.

The location of the virtual machine and it’s type are used needed for acquiring a new
VM and are therefore necessary for the execution of this action. The pricing informa-
tion is, as mentioned before, used to determine the costs of a candidate architecture dur-
ing optimization. A CloudResourceType represents a speci�c cloud resource o�ered by a
cloud provider and references the CloudProvider. This superclass was introduced to facil-
itate adding new cloud resources that are not virtual machines, like automatically scaling
computing resources.

The CloudProvider metaclass represents a cloud provider and stores the credentials to
access the cloud provider’s services, which is needed during the execution of an adap-
tation to acquire VMs. The name is used to identify the provider, which also identi�es
how to access the provider’s interfaces for resource management during adaptation ex-
ecution. This mapping is done at the implementation level and to keep the model clean
of implementation details, only the name is used. This enables the implementation to
add or remove new providers without changing the metamodel. A CloudProvider can
also contain an arbitrary number of CloudResourceType instances, which can be acquired
to deploy application components on them. The cloud providers are again contained in
the CloudPro�le metaclass, which eases access to all cloud providers during the planning
stage. This is convenient, because the planning stage has to consider all available resource
types from all cloud providers, when generating new candidates.

With this extension of the PCM metamodel we can model the environment in which
a cloud-based application is executing and also store the necessary information for au-
tomated adaptation execution. Moreover, we retain the possibility to leverage the tools
developed for the PCM metamodel.

22

5.1 Candidate Generation

5.1.2 Base Model Extraction

The extended PCM metamodel is used as input for the model processing step. This step is
performed for two reasons. The �rst is that the design space has to be de�ned before the
design space exploration can happen in the Model Optimization step. The design space for
a cloud-based application is spanned primarily by the available cloud resources and the
components that can be allocated on them. The available cloud resources are a discrete
set of possible choices, because the available resource containers are normally de�ned
by the cloud provider as a set of VM types. However, the amount of replicas of those
types is practically not limited. This poses the problem that the available possibilities for
allocating components is practically unlimited as well, because every component may be
allocated on any of the replicated resource containers.

This leads to the second reason, why the model is preprocessed before the actual de-
sign space exploration. Without constraining the possible allocations of components, the
design space to explore would also be unconstrained, which makes the optimization more
di�cult. One way to constrain the possibilities for allocating a component is to use the in-
troduced types of resource containers and allow the allocation of components only onto
types of resource containers instead of individual ones. By replicating the instances of
those resource container types, it is then possible to leverage the elasticity of the cloud
without the problem of an unlimited number of possible allocations. This strategy leads
to an application architecture where one component is deployed onto a group of resource
containers of the same type. Another advantage of this constraint is that it limits the num-
ber of degrees of freedom for the optimization. We can also limit the number of needed
resource containers to the number of resource container types, which further decreases
the design space.

The disadvantage is that it is no longer possible to allocate components arbitrarily onto
any kind of resource container. However, this kind of arbitrary allocation only com-
plicates the planning process and does not necessarily lead to better performance. The
resource demands of a component do not change based on the resource container it is de-
ployed on. Therefore, if a resource container of a speci�c type �ts the resource demands
of one component and satis�es the performance constraints, it should be deployed on that
speci�c type. If this component causes a performance bottleneck, the available options
are to replicate it and distribute the load or to migrate it onto a resource container with
better hardware. Replicating it onto a resource container of a di�erent type than the ones
already used would result in a di�erent utilization of the replicated resource container,
which may not completely solve the performance bottleneck. Migrating only some com-
ponents onto a di�erent type of resource container leads to the same problem. Therefore,
it is not necessary from a performance perspective to allow arbitrary allocations.

To be able to re�ect this kind of constraint, it is necessary to be able to easily determine
the number of replications of an allocated component and the involved resource contain-
ers as well as their type. This information is available in the PCM, but it is not easily
accessible. Therefore we introduce the concept of Allocation Groups. Allocation Groups
are calculated during the Base Model Extraction step and represent all allocations of one
component onto one speci�c type of resource container.

23

5 Concept

Alternatively, the PCM could have been changed to support a basic architecture model
which only contains one resource container per allocated component. Additionally, the
replicated containers would be modeled in a di�erent architecture model, including an
easily accessible method to calculate the number of replicas per resource container in the
basic model. This would, however, be a major change in the architecture of the PCM
which is outside the scope of this thesis. The advantage of this solution is that it would
explicitly model the replications and groups of containers belonging to one component.

The calculation of Allocation Groups is done as a preprocessing step and therefore only
once per optimization run. This relieves our approach from calculating the number of
replications for each component on-the-�y, which would be costly. The algorithm for
this calculation is shown in Algorithm 1. For the calculation, we use the allocation group
matrix consisting of sets of resource containers that are addressed via the allocated com-
ponent and the type of the resource containers. The algorithm goes through all allocation
contexts in the model and extracts the deployed component from the assembly context
which is referenced in the allocation context. It then extracts the resource container that
is referenced in the allocation context and queries it’s type. As the next step, it adds the
resource container to the set in the allocation group matrix addressed by the extracted
component and resource container type.

Algorithm 1 Algorithm for calculating allocation groups.
Let R be the set of all resource containers
Let T be the set of all resource container types
Let C be the set of all components
Let G ∈ P (R)C×T be the matrix of allocation groups

Require: A, the set of all allocation contexts
function CalculateAllocationGroups(A)

for all a ∈ A do
asmCtx ← a.assemblyContext
component ← asmCtx .encapsulatedComponent
container ← a.resourceContainer
containerType ← container .instanceType

Gcomponent ,containerType ← Gcomponent ,containerType ∪ {container }
end for

end function

For example, let there be three instances of the component TradingSystem:Inventory
which are deployed onto three resource containers of type AWS m3.medium, as depicted
in Fig. 5.4. During the calculation of all Allocation Groups, the three resource contain-
ers would be grouped together in the allocation group for the TradingSystem:Inventory
component on the AWS m3.medium resource container type. Another instance of the
TradingSystem:Inventory component is allocated on a resource container of type AWS
m3.xlarge, together with an instance of the Web component. This results in two di�erent
Allocation Groups, one for each component.

24

5.1 Candidate Generation

<
<I

n
st

a
n

ce
>

>

A
W

S
m

3.
m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
m

3.
m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
m

3.
m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
m

3.
m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
 m

3
.m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
 m

3
.m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
 m

3
.m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
 m

3
.m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
m

3.
m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
m

3.
m

ed
iu

m

<
<I

n
st

a
n

ce
>

>

A
W

S
m

3.
xl

ar
ge

<
<I

n
st

a
n

ce
>

>

A
W

S
m

3.
xl

ar
ge

<<
co

m
po

ne
n

t>
>

Tr
ad

in
gS

ys
te

m
:I

n
ve

nt
or

y

<<
co

m
po

ne
n

t>
>

Tr
ad

in
gS

ys
te

m
:I

n
ve

nt
or

y

<<
co

m
po

ne
n

t>
>

Tr
ad

in
gS

ys
te

m
:I

n
ve

n
to

ry

<<
co

m
po

ne
n

t>
>

Tr
ad

in
gS

ys
te

m
:I

n
ve

n
to

ry

<<
co

m
p

o
n

en
t>

>

W
eb

<<
co

m
p

o
n

en
t>

>

W
eb

<<
co

m
po

ne
n

t>
>

W
eb

<<
co

m
po

ne
n

t>
>

W
eb

A
llo

ca
ti

o
n

 G
ro

u
p

 1
:

Tr
ad

in
gS

ys
te

m
:I

n
ve

n
to

ry
 o

n

A
W

S
m

3
.m

ed
iu

m

A
llo

ca
ti

o
n

 G
ro

u
p

 2
:

W
e

b

o
n

 A
W

S
m

3.
m

e
d

iu
m

A
llo

ca
ti

o
n

 G
ro

u
p

 3
:

Tr
ad

in
gS

ys
te

m
:I

n
ve

n
to

ry
 o

n

A
W

S
m

3
.x

la
rg

e

A
llo

ca
ti

o
n

 G
ro

u
p

 4
:

W
e

b

o
n

 A
W

S
m

3.
xl

a
rg

e

Fi
gu

re
5.

4:
Ex

am
pl

e
fo

rt
he

gr
ou

pi
ng

of
co

m
po

ne
nt

sb
y

th
e

ty
pe

so
fr

es
ou

rc
e

co
nt

ai
ne

rs
th

ey
ar

e
al

lo
ca

te
d

on
.

25

5 Concept

Furthermore, this grouping also allows to easily determine how many times a compo-
nent was replicated on a speci�c container type by simply counting the resource contain-
ers in the Allocation Group. This is important for determining the degrees of freedom that
span the design space.

For this thesis, we employ two degrees of freedom de�ned by PerOpteryx [26]. The �rst
one is the Allocation Degree, which enables the allocation of components onto any of the
allocation groups that were calculated from the current runtime model. For the basic case
that a component gets allocated onto a di�erent allocation group with the same number of
resource containers, this re�ects the migration runtime change described in Heinrich et al.
[18]. If the number of resource containers in the target allocation group is smaller than the
one in the original allocation group, this results in migration and deallocation changes.
The migration is executed for the number of resource containers in the new allocation
group and the remaining components are deallocated from the resource containers in the
old allocation group. In case the number of resource containers in the target allocation
group is higher, all original components have to be migrated and the component is newly
allocated on all remaining resource containers.

The replication and dereplication changes occur if a component is still allocated onto
the same allocation group and the number of containers in this allocation group changes.
To model this, we employ the second degree of freedom, which is the Resource Container
Replication Degree. This degree describes the possibility of a resource container to be
replicated. Because we use the concept of allocation groups, it is possible to describe
the number of replicas in one allocation group by just using one resource container as a
representative of the whole group and enable the replication of this resource container.
This way we can reduce the number of needed resource containers and thereby also the
number of degrees of freedom.

However, if we want to be able to co-allocate multiple allocation groups onto the same
set of resource containers, this has to be taken into account when de�ning the Allocation
Degree. In this case, the allocation degree must provide the possibility to not only allocate
the component onto all possible resource container types, but also onto all container types
of any other allocation group.

If for example, the TradingSystem:Inventory component from Fig. 5.4 needs the ability
to be co-allocated onto the twoWeb component instances running on theAWSm3.medium
container type, the allocation context needs to include one set of all available container
types where only the inventory is deployed and one set of container types where both
components can be allocated. This means, in general, we need to include one complete
set of resource container types per allocation group into the allocation degree to allow
co-allocation of all components with all other allocation groups.

The PCM does not support any concept like allocation groups. One possibility would
be to include this concept into the PCM, which would require a redesign of parts of the
PCM. Therefore we propose an approach to transform an instance of the extended PCM
into another instance of the extended PCM which is a simpli�ed version of the original
model. A resource container in the transformed model is the representative container for
one allocation group with one representative allocation context for a speci�c allocation
group deploying one assembly context to the container. This way we create a basic model

26

5.1 Candidate Generation

without replicated resource containers, allocation contexts or assembly contexts. This
transformed model is then used as the input to the actual design space exploration.

This transformation results in a loss of information about the actually used resource
containers. It is therefore no longer possible to take these resource containers into ac-
count when optimizing the deployment. This loss of information would not occur with
the concept of a base model in the PCM. This is, however, compensated by the adapta-
tion planning, which does not rely on the transformed base model, but uses the original
runtime model to extract the adaptation actions. Therefore, allocation groups are a good
compromise.

The transformation itself is done by �rst deriving the allocation groups from the current
runtime model. Then the resource environment model, the cost model and the allocation
model are emptied to prevent any unwanted elements to interfere in the transformed
model. Now these models are rebuilt, using the information from the generated alloca-
tion groups. First, the transformation rebuilds the resource environment. To do so, one
resource container for each VMType de�ned in the Cloud Pro�le model is added for each
allocation group. At the same time the needed information about the costs of the resource
container is added to the cost model and a Resource Container Replication Degree for the
container is created. The runtime of this approach is in O (n ·m), with n the number of
resource container types and m the number of allocation groups.

One way to improve this procedure would be to extend PerOpteryx with a way of
handling the replication of resource container types. This would require PerOpteryx to
use the extended PCM and use the VM types as a type of resource container which can
always be replicated. This would be facilitated by also introducing the concept of a basic
and a replication model into PerOpteryx. The drawback of this approach is that this would
mean to fundamentally change the way PerOpteryx handles replications, which can not
be done in this thesis.

Another possible alternative would be to use a di�erent way of generating the candi-
dates, which is able to natively handle replications of resource containers. CDOXplorer
[14] is an example for such an approach and also uses evolutionary search algorithms
for design space exploration. This approach employs it’s own architectural model and
descriptions of deployment options. Therefore, to use it, we would also need to trans-
form the PCM into the input models and also transform the output again. To do this
would therefore mean to introduce even more complex transformations than the one we
propose to use, without additional bene�ts.

To create a Resource Container Replication Degree, it is necessary to specify the lower
and upper bounds for the number of replications. The lower bound is always one, because
PerOpteryx relies on the fact that there is always at least one replica available. However,
this behavior does not have an in�uence on the results, because the costs are only applied
for resource containers that are actually used and the same applies for the performance
analysis. To compute the upper bound for the number of replicas, let r ∈ N be the current
number of replicas in an allocation group, then the upper bound u ∈ N is calculated as

u = (r + replicationO�set) ∗ replicationFactor

where replicationO�set ∈ N and replicationFactor ∈ N are con�gurable and are
set to replicationO�set = 10 and replicationFactor = 1 by default. This calculation

27

5 Concept

enables the replication to acquire at least a number of replicationO�set replications
of a resource container, where 10 should be a sensible default value for moderate sized
applications, given that replications are possible for each individual allocation group.

5.1.3 Model Optimization

The model optimization step derives new candidate architectures, which optimize the
performance and costs of the application’s deployment. For this step, we require an ap-
proach which is able to do a multi-criterial optimization on the input architectural run-
time model. This is necessary, because we want to optimize the model not only targeting
the performance properties, but also minimizing the costs of the deployment at the same
time. Moreover, it has to be able to handle multiple types of virtual machines, because
cloud providers often o�er a multitude of virtual machine types. Therefore it should not
be constrained to just one or a few types. It should also be able to provide pareto-optimal
candidates in a su�ciently fast way. The optimization of deployment options is known
to be an NP-hard problem [7], but it should be possible to complete within an acceptable
timeframe. Another requirement is the use of the PCM to avoid unnecessary transforma-
tions of models.

Such optimizations can be tackled in various ways [22]. One way is to scalarize all ob-
jectives but one, thus converting the problem into a single-objective optimization problem
which is then solved for systematically varied scalarizations. Examples for this approach
are the weighted sum method or the ε-constraint method. They may deliver fast results if
the sub-problems can be solved in a fast way. Because architectural optimization can be
arbitrarily complex, this is not the case. Therefore, to solve those problems, it is still nec-
essary to rely on numerical methods or simulations, except for models with very strong
constraints.

Therefore, to optimize a multi-criterial architecture optimization problem, the use of
multi-objective heuristics is an approach that is better suited [22]. There are two types of
multi-objective heuristics, trajectory-based and population-based. The trajectory-based
heuristics start with a, possibly random, point in the search-space and search for a more
optimal solution based on this point and according to the method employed by the heuris-
tic. Examples are hill climbing methods or simulated annealing. These methods only use
one point in the search-space and assess it’s properties, which can be sub-optimal for
multi-criterial problems. For those problems it tends to work better to look at multiple
points in the search-space, because the solution is most likely a set of pareto-optimal
points.

The population-based approaches use a set of solution points and work with those solu-
tions to generate new solutions in each iteration. Therefore they are well-suited to handle
multi-criterial optimization problems. The most important examples of these approaches
are evolutionary algorithms, ant colony optimization and particle swarm optimization.
Because evolutionary algorithms are a popular and e�cient method for architecture op-
timization, we chose to implement the design space exploration for our approach on the
basis of this method.

Our approach achieves the model optimization through design space exploration by
using the PerOpteryx tool which was previously described in Section 2.3. There are sev-

28

5.1 Candidate Generation

eral reasons why we chose this tool. PerOpteryx is very well integrated into the PCM
ecosystem and is capable of using di�erent methods to execute the design space explo-
ration spanned by the degrees of freedom. The most important method is it’s constrained
evolutionary algorithm which is capable of generating multiple architecture model can-
didates by using the initial model, varying it’s values for the degrees of freedom and
crossing it with other candidates. Additionally it is still able to guide the model creation
by employing additional heuristics, like server consolidation. Through this evolutionary
algorithm, it is also capable of producing good candidates in a fast way.

However, PerOpteryx does not support cloud-based applications out-of-the-box, which
results in the necessity to pre-process the input model, as described in Sec. 5.1.2. Yet this
can be done with relatively low e�ort, because PerOpteryx uses the PCM, therefore it
does not require additional model transformations as it would be the case when using
other tools, like CDOXplorer [14]. By using the pre-processing step it is also possible to
use the resource container types speci�ed in the extended PCM with PerOpteryx.

The candidate generation uses a multi-criterial optimization approach and tries to im-
prove on all of the criteria that are speci�ed by a Quality-of-Service Modeling Language
(QML) model [16]. This QML is used in PerOpteryx to constrain the evolutionary algo-
rithm to only consider viable options that ful�ll the given quality-of-service aspects.

For this thesis, the main goals of the design space exploration are to decrease the re-
sponse time of the application while minimizing the deployment costs at the same time.
But it is also possible to add additional constraints, like the consideration of privacy con-
straints, to the optimization process if needed. PerOpteryx analyses each candidate for
the given quality attributes and ranks them according to the results of this analysis. For
the performance analysis, PerOpteryx can use the tools the PCM provides.

These performance analysis tools can be divided into two groups. One group uses a
simulation-based approach to analyze the performance properties of a model. This ap-
proach simulates the modeled system and derives the performance properties from it’s
observed behavior. SimuCom is the most mature performance analyzer for the PCM based
on this approach. It is the reference simulator for the PCM and generates an executable
Java representation of the model to simulate it’s behavior. EventSim [28] for event-based
simulation and QPNSolver [23] for the simulation of queuing petri nets are other exam-
ples of this approach. All of these approaches have in common that they provide good
results, although they are rather time and resource intensive because of the simulation
they have to perform. This is especially a problem when analyzing systems with many
servers, which can occur frequently when exploring deployment options with an evolu-
tionary algorithm. Moreover, these approaches do not support server replicas, which is
essential when analyzing cloud-based applications.

The second group consists of analytical approaches to analyze the model. The most
prominent representative of this group is the LQN Solver [13], which uses a numerical
approach to predict the performance of layered queuing network (LQN) models. This tool
is speci�cally designed for distributed systems and supports server replications. However,
the PCM model needs to be transformed into an LQN model before it can be analyzed.
Another analytical approach is the solver for Stochastic Regular Expressions (SREs) [23],
which can be used to calculate the distribution of response times in a single-user setting.
These approaches are inherently faster than simulations, yet they may be not as accurate.

29

5 Concept

However, this is negligible in our case, because with an evolutionary algorithm it is more
important to have a fast method to analyze the population, because of the possibly big
number of candidates. Moreover, the transformation from the PCM to LQN models is
already available in PCM. Therefore we decided to use the LQN Solver for the performance
analysis of the candidates generated by PerOpteryx. Moreover, using the LQN Solver,
it is not necessary to explicitly model the load balancing mechanisms between replicas
because the solver automatically distributes the load.

PerOpteryx may potentially generate many candidates as the output of the design space
exploration process. All of these candidates are pareto-optimal, and therefore equally vi-
able solutions to the optimization problem. To further process the candidate and go on
with the adaptation of the system, it is however necessary to choose one of those candi-
dates. One way to do this would be to always ask the operator, which candidate to choose.
However, this would hinder the automatic adaptation and if no operator is available, the
adaptation would be stalled. Moreover, the evolutionary algorithm has a tendency to dis-
tribute all components onto as many servers as possible, which is intensi�ed further by
our approach to create a resource container for every available VMType.

Therefore we adapted PerOpteryx to output the candidate with the lowest costs, which
tends to be the one with the least amount of resource containers in use. This is the case,
because each used resource container contributes to the costs of a deployment. Therefore,
having fewer resource containers normally results in lower costs as well. We also adapted
PerOpteryx to output the selected candidate as a PCM model to use it for the planning
of the adaptation steps. Normally PerOpteryx uses it’s own output model containing
the choices for all given degrees of freedom. However, using the PCM instead of the
PerOpteryx speci�c output has the advantage of being a more general solution. This
means it is possible to exchange the candidate generator without modifying the rest of
the implementation, as long as the generator uses the PCM as it’s output model. The
best candidate that was generated by the candidate generator is then used to calculate
the necessary adaptation steps. Note that PerOpteryx always regards the input candidate
as one possible output candidate. Therefore, if no other candidate can be found by the
optimization, the input model will be regarded as the best candidate.

5.2 Adaptation Calculation

In this section we detail the derivation of the necessary adaptation actions to adapt the
current application architecture into the optimized architecture. This is done on the basis
of the di�erence between the prescriptive architectural runtime model that was generated
during the preceding candidate generation step and the descriptive architectural runtime
model of the current application architecture.

An alternative approach to using the model di�erences would be to directly use the
output of PerOpteryx. This output is given in the form of a DesignDecision model, which
contains the choices that were made for each degree of freedom of a speci�c candidate.
This model can also be used to compute the di�erences between the current architecture
and the candidate architecture. However, the main drawback is that this model is speci�c
to PerOpteryx and therefore not a part of the PCM. For our approach, we do not want to

30

5.2 Adaptation Calculation

depend on the details of the speci�c tool used to derive candidates. This leads to a slightly
more complex solution, because the model comparison has to extract all the choices from
the model, but allows the candidate generation tool to be exchanged without rewriting
the comparison.

Another option is the direct observation of the decisions that are made by the can-
didate generation tool. These decisions could in turn be mapped to adaptation actions.
This approach requires some form of observation mechanism included in the candidate
generation tool, which is again highly speci�c to the used tool. Moreover, for PerOpteryx
this could lead to a non-optimal sequence of adaptation actions, because the evolution-
ary algorithm uses random adaptations to generate candidates. Minimizing the number
of adaptation actions is important, because every adaptation action can potentially dis-
rupt the functionality of the application. Additionally, it does not make sense to execute
an adaptation action, just to undo it in a subsequent action, which is a possibility when
using this approach. Therefore, this approach would need a signi�cant amount of post-
processing of the resulting adaptation actions, which makes it infeasible for our approach.

We chose the model comparison, even though the di�erence calculation is a little more
complex than the comparison when directly using the DesignDecision model. It provides
a feasible way to calculate the minimal sequence of adaptation actions and is indepen-
dent of the used tool. The actions that are derived by our approach are modeled in the
Systemadaptation Model, which is described in the following Section.

5.2.1 Systemadaptation Model

One possibility to represent adaptation actions is to directly implement them in the used
programming language. This approach does not re�ect the model-driven approach of
iObserve and the PCM by introducing a direct dependency to language-speci�c artifacts.
To be in accordance with the overall approach of iObserve and the PCM, we therefore
decided to introduce a new model which represents all available adaptation actions and
contains all information needed to execute them. This has the bene�t of being technology
independent with the disadvantage that such a model introduces an additional overhead
for it’s creation. Moreover, the technology-dependent approach has to access the infor-
mation from the PCM Cloud model to access the cloud provider’s interfaces. With an
additional model directly referencing the PCM Cloud model, we can minimize the e�ort
to acquire all the needed information.

The introduced Systemadaptation Model is shown in Fig. 5.5 and contains the Sys-
temAdaptation metaclass as the container for all Action instances contained in the model.
We de�ne a hierarchy for Actions, by dividing them into two subgroups: AssemblyCon-
textActions and ResourceContainerActions. This re�ects the natural hierarchy of these ac-
tions. AssemblyContextActions are used for all adaptations that include an AssemblyCon-
text and therefore an application component. ResourceContainerActions are used for all
actions that include a ResourceContainer.

The AssemblyContextActions include the AllocateAction, the DeallocateAction, the Mi-
grateAction and the ChangeRepositoryComponentAction. Therefore these actions cover
the (de-)allocation and migration cases of changes at runtime [18]. The additional Chan-
geRepositoryComponentAction adds the ability to exchange a component with a di�erent

31

5 Concept

Figure
5.5:The

System
adaptation

m
odelcontaining

allavailable
adaptation

actions.

32

5.2 Adaptation Calculation

component which provides and requires the same interfaces. This might make sense if
the implementation of a speci�c component is fast for some use-cases but not for others.
Therefore it would be bene�cial for the performance of the application to exchange this
component if a use-case requires a more constantly performing implementation of the
component.

All AssemblyContextAction instances have the sourceAssemblyContext reference to the
AssemblyContext instance for which this action is relevant. The AllocateAction uses the
newAllocationContext reference to describe onto which ResourceContainer instance the
component should be allocated. For the DeallocateAction, the oldAllocationContext refer-
ence describes which allocation of the source component is no longer valid and has to be
deallocated.

A MigrateAction references the sourceAllocationContext to indicate where the compo-
nent was originally allocated to and the newAllocationContext to describe onto which
container the component should be migrated. For the ChangeRepositoryComponentAc-
tion it is su�cient to reference the newRepositoryComponent that should be used instead
of the component that is encapsulated in the sourceAssemblyContext.

The ResourceContainerActions can be divided further into the TerminateAction which
terminates an instance of a resource container, the AcquireAction which acquires a new
resource container and the ReplicateAction which replicates a component onto a new re-
source container, including the state of the component. This covers the replication and
dereplication case of possible changes at runtime. All ResourceContainerActions have a
reference to their sourceResourceContainer which is the ResourceContainer instance for
which this action should be carried out. For the TerminateAction and the AcquireAction
this information is already su�cient to describe the action. Only the ReplicateAction needs
more information, because it needs to know which component should be replicated and
onto which resource container. Therefore, newResourceContainer references the resource
container onto which the component included in the sourceAllocationContext should be
replicated.

The ReplicateAction and a corresponding de-replication action are, however, special
cases which are mapped to anAcquireAction and anAllocateAction for replication. Derepli-
cation is mapped to a DeallocateAction and a TerminateAction. This is due to the fact that
it is currently not possible to copy the internal state of a component.

With the information provided by these actions, all necessary information for the ex-
ecution of the actions is provided. Most of the actions have a direct or indirect, via Al-
locationContext, reference to a resource container of the PCM Cloud model which again
references the information needed to access the cloud provider and issue the necessary
commands to execute the actions.

5.2.2 Model Di�erence Calculation

To calculate the di�erences between the descriptive architectural runtime model and the
prescriptive architectural runtime model and to derive the adaptation actions, we use
a simple algorithm based on the fact that all relevant actions are either related to an
AssemblyContext or to a ResourceContainer.

33

5 Concept

To calculate the AssemblyContextActions, we save all AssemblyContexts of the current
model into a dictionary, which is indexed by the context’s ID. Next, we iterate over all As-
semblyContexts present in the target model. If the current AssemblyContext is not present
in the dictionary, we add a new AllocationAction to the list of actions, because the assem-
bly context needs to be allocated in the target model. If the current context is present
in the dictionary, there are only two possible actions left. In case the component in the
current context has a di�erent ID than the component in the context from the dictionary,
a ChangeRepositoryComponentAction is added to the list of actions, because there was an
exchange of components on this assembly context. If the current context is deployed on a
di�erent resource container than the context in the dictionary, we need to add a Migrate-
Action to the list of actions. Next, we delete the context from the dictionary and go on to
the next context.

Once this iteration is done, all assembly contexts that remained in the dictionary are no
longer used in the target model and we create a DeallocationAction for each context left
in the dictionary. This way, all AssemblyContextActions are recognized by the algorithm.

We employ a similar algorithm to determine all ResourceContainerActions. First all re-
source containers of the current model which have components allocated on them are
added to a dictionary, again indexed by their IDs. Then we iterate over all resource con-
tainers in the target model which have components allocated on them. If the current re-
source container is not contained in the dictionary, a new AcquireAction for this server is
generated, because the container needs to be present in the target model. If the container
is found in the dictionary, it can be deleted from the dictionary, because the container is
still present in the target model. Lastly, we iterate over all containers that are still present
in the dictionary and add TerminateActions for each one of them, because they are no
longer used in the target model and can therefore be terminated.

These algorithms depend on the fact that the IDs of PCM entities like the resource con-
tainers and assembly contexts are not altered when deriving new candidates. An alter-
native approach to the model comparison would be to use a general purpose model com-
parison tool like the Eclipse Modelling Framework (EMF) Compare tool. Such a tool does
not rely on PCM speci�c identi�ers, however, it would require additional post-processing
of the comparison results to extract the adaptation actions, which would result in a sim-
ilar algorithm as the one described. Additionally it would introduce more complexity to
the problem and enlarge the resource consumption, because the tool would need to be
loaded and executed in addition to iObserve. Therefore we decided to use an algorithmic
solution speci�cally tailored to the problem at hand.

5.3 Adaptation Planning

The adaptation actions resulting from the adaptation calculation step can not be executed
as they are discovered because the order of their execution is important. It is not possible
to allocate a component onto a resource container that has not yet been acquired, for
example. Therefore the adaptation planning step is needed to order the adaptation actions
in such a way, that dependencies between actions are taken into account. Furthermore,
the disruptions caused for the application should be minimized. Therefore, it is the goal

34

5.3 Adaptation Planning

of the adaptation planning to keep the application in a functional state while executing
the adaptation actions.

One option to order the actions is to use the di�erent types of actions to determine
their ordering. This approach �rst executes all actions to acquire resource containers.
This way, all subsequent actions are guaranteed to be executed in an environment where
all resource containers are already available. Now the order for the change component,
migration, replication as well as allocation and deallocation actions has to be determined.

The deallocation and termination actions should be performed last, because deallocat-
ing components before their replacements are allocated may lead to a loss of functionality
until the adaptation is completed. The same holds true for termination actions. Allocate,
migrate and replicate actions are independent of each other and may be performed in any
order after the resource containers are available. Component change actions, however,
may have an in�uence on migrate and replicate actions, because a changed component
can also be migrated or replicated. Deallocation actions are not impacted by a component
change, because it would not make sense to change a component and then deallocate it.
Therefore component change actions have to be executed before migrate and replicate ac-
tions. Component changes do not a�ect allocation actions, because an allocation action
would just allocate the changed component instead of allocating the current component
and changing it afterwards.

After all components are allocated, migrated and replicated, the deallocation and termi-
nation actions can be performed to remove the components that are no longer needed and
terminate super�uous resource containers. The proposed adaptation sequence is there-
fore to �rst execute all acquire actions, followed by allocation actions, component change
actions, migration actions and replication actions. As the last two action types, all deal-
location actions followed by all terminate actions should be executed. This approach is
a simple way to order the adaptation actions only depending on the type of action that
are to be performed. It does, however, assume that there are no further dependencies be-
tween the components and does not take into account possible changes of other artifacts,
like con�guration �les, build-scripts or test cases.

This might be problematic, if, for example, the TradingSystem:CashDeskLine compo-
nent needs to specify the location of the TradingSystem:Inventory component in one of it’s
con�guration �les to access the store’s inventory. If the inventory component needs to be
migrated, it is necessary to change the con�guration �les of all TradingSystem:CashDeskLine
components. With the proposed approach, this change has to happen inside the executed
action script and is not considered when planning the adaptation.

Therefore a di�erent approach to adaptation planning which takes into account the im-
pact of a change on the complete application architecture is an alternative to the method
described above. One approach which is capable of calculating such impacts is the Karl-
sruhe Architectural Maintainability Prediction (KAMP) tool introduced by Rostami et al.
[33]. With KAMP, it is possible to calculate the impact of a change request and to pre-
dict the steps that are necessary to implement that change. It uses additional annotations
on the architectural model to represent the needed information about dependencies be-
tween components and the artifacts associated with them. This approach is also useful
to direct an operator in a more detailed way if an adaptation step can not be performed
manually. The main focus of KAMP, however, is on software evolution activities in a semi-

35

5 Concept

automated context. Therefore the tool would need modi�cation to be able to use it for
automatic adaptation planning. It also increases the complexity of the used architectural
model and would need to be integrated into iObserve before using it.

We decided to use the �rst approach because it does not depend on additional tooling
and is su�cient to plan an adaptation sequence. It does, however, rely on the action
scripts to consider all dependencies between modules and execute the necessary actions
to update them.

5.4 Adaptation Execution

The action sequence generated by the planning step has to be executed for the actual
transformation of the application’s current architecture into the target architecture. This
execution step is highly dependent on the technology that is used to build and deploy the
application. Our approach should, however, not depend on a speci�c technology stack or
on application speci�c build infrastructure. To achieve this kind of solution, some kind of
abstraction from those details has to be used instead of directly implementing the actions
in iObserve.

One way to achieve this is to add an additional wrapper script between the application
speci�c action script and the adaptation action model. This script can be called by our
approach and only executes the application speci�c script on the resource container it
should run on. The application speci�c action scripts can be speci�ed for each component
and for each type of action and perform their respective action. For this approach, the
action scripts are only executed on the resource containers, therefore restricting them to
be self-contained and be able to retrieve all required artifacts by themselves. This is a
valid assumption for most applications, because most software engineers use repositories
and version control systems to build and develop their code. In this case, an action script
can easily use these repositories to access the relevant artifacts on the resource container.
With the use of container technologies, this process can even be simpli�ed further. The
drawback of this solution is that all action scripts are executed on the resource containers,
which may take some time to complete and blocks the resource container from being used.

Another possibility to achieve this is to use a dedicated separate tool which receives
the adaptation plan as input and uses this information to directly execute the adapta-
tion actions on the application. With this approach, application speci�c technologies can
be leveraged and there is room to implement actions that have an in�uence on multiple
resource containers instead of only one. However, this approach requires the implementa-
tion of such a tool for every application that wants to use iObserve. Moreover, it requires
additional maintenance in case the used technologies change. Therefore we propose the
use of wrapper scripts for executing adaptation actions from iObserve.

To execute the action scripts on the cloud provider’s infrastructure, it is necessary to
have a way to communicate with the cloud provider as well as with the resource con-
tainers. One way to achieve this is to implement the communication directly in iObserve.
The advantage of this solution is, that the number of new dependencies is kept to a min-
imum. A big disadvantage, however, is that there are many cloud providers without a
common way to access them and the interfaces may change relatively frequently. E�orts

36

5.4 Adaptation Execution

to standardize interfaces, like the Open Cloud Computing Interface (OCCI, [9]) or the
Cloud Infrastructure Management Interface (CIMI, [8]) exist, but are not yet adopted by
many providers. Therefore it would require a lot of e�ort to support the needed cloud
providers with this approach.

Therefore we propose the use of a middleware, which implements the communication
with the cloud providers and de�nes a uniform API for the wrapper scripts to work with.
This has the disadvantage of introducing new dependencies, but enables the use of many
cloud providers with only one code base. By using this approach the code for the wrapper
scripts does not need to be changed when the cloud provider interfaces change, only the
middleware needs to be changed.

37

6 Implementation

We implemented our approach using Java in conjunction with the Eclipse Modeling Frame-
work (EMF) for all modeling related tasks. This approach is used by iObserve as well, so
our approach builds on the existing iObserve implementation, which is also available un-
der an open-source license [1]. The candidate generation steps are implemented in the
org.iobserve.planning packages within iObserve and the adaptation planning as well as
the execution is implemented in the org.iobserve.adaptation packages.

iObserve uses the Teetime framework to implement it’s pipes and �lters architecture.
Therefore our approach integrates into this framework as well. The candidate generation
stage is implemented in the CandidateGeneration class, which itself calls the sub-stages
implemented in the ModelProcessing, ModelOptimization and CandidateProcessing classes.
The extraction of the base model is performed by the ModelTransformer class. This class
extracts the allocation groups from the resource environment by initializing an instance
of the AllocationGroupsContainer, and consecutively rebuilding the model. This process,
including the following exectuion of PerOpteryx via an instance of theModelOptimization
class is shown in Fig. 6.1.

TheModelOptimization class builds a wrapper class around the execution of PerOpteryx.
This is necessary because PerOpteryx is usable only in conjunction with Eclipse. There-
fore, to use PerOpteryx in the iObserve context we developed a standalone version of
PerOpteryx, which can be called from iObserve to perform the design space exploration
and candidate generation. This is done by packaging PerOpteryx as an Eclipse Applica-
tion and adding an additional wrapper for con�guring PerOpteryx. A native integration
of PerOpteryx into iObserve would be bene�cial, because the candidate generation could
be observed better. But due to the dependencies to Eclipse this was not possible to achieve
during the course of this thesis.

The PerOpteryx Eclipse Application is available with iObserve in the form of an Eclipse
Plug-in Project called peropteryx.plugin. In this plug-in, we automatically con�gure Per-
Opteryx according to the given con�guration options. The most important being the
number of iterations of it’s evolutionary algorithm and the number of individuals per it-
eration. This con�guration is done in the PerOpteryxLaunchCon�gurationBuilder class,
which is called from the application’s entry point in the PerOpteryxHeadless class.

The CandidateProcessing class pre-processes the candidate and generates a graph rep-
resentation from it. This is included in our implementation, because there is simultaneous
work on privacy constraints, which uses this representation. Additionally, this stage sets
some variables in the AdaptationData object, which is passed on to the adaptation stage
and includes information about the location of the models.

The adaptation stage is implemented in the SystemAdaptation class and is also divided
into sub-stages. These sub-stages are implemented in the AdaptationCalculation, Adapta-
tionPlanning and the AdaptationExecution classes. The AdaptationCalculation calculates

39

6 Implementation

:C
and

idateG
en

eratio
n

:C
and

idateG
en

eratio
n

:M
o
d
elProcessing

:M
o
d
elProcessing

:M
o
d
elTran

sfo
rm

er
:M

o
d
elTran

sfo
rm

er

M
o

de
lD

ir : U
R

I

sen
d

(m
o

d
elD

ir : U
RI)

<<
create>>

tran
sfo

rm
M

o
d

el()
in

itM
o

de
lTran

sfo
rm

atio
n()

:A
llo

cation
G
rou

ps
Co

n
tain

er
:A
llo

cation
G
rou

ps
Co

n
tain

er
<<

create>>

in
itA

llo
catio

n
G

ro
up

s()

clearU
n

nee
de

dElem
en

ts()

reb
uild

En
viron

m
e

nt()

:M
o
d
elO

p
tim

izatio
n

:M
o
d
elO

p
tim

izatio
n

sen
d

(p
lan

ningD
ata : P

lan
n

in
gD

ata)
:Execu

tio
n
W
rap

p
e
r

:Execu
tio

n
W
rap

p
e
r

<<
create>>

startM
o

de
lG

en
eratio

n()

:C
and

idatePro
ce
ssin

g
:C
and

idatePro
ce
ssin

g

sen
d

(p
lan

ningD
ata : P

lan
n

in
gD

ata)

Figure
6.1:The

sequence
diagram

show
ing

the
transform

ation
ofthe

m
odeland

the
execution

ofthe
design

space
exploration.

40

the adaptation actions resulting from the di�erence between the original model and the
generated candidate model. These actions are represented by the model elements of the
Systemadaptation model. This model and the generated Java representation is available
in the planning.systemadaptation Eclipse Plug-in Project located in iObserve.

These model elements are ordered in instance of the AdaptationPlanning class before
they are passed on to the AdaptationExecution. There the adaptation actions are used
to retrieve parameterized action scripts from an ActionScriptFactory instance. This ap-
proach is used to decouple the adaptation execution from the actually used scripts. The
adaptation execution does not know the speci�cs of the scripts generated by the factory.
Therefore the scripts are easier to exchange.

For executing the scripts, they are �rst queried whether they can, in principle, be exe-
cuted in a fully automatic way or if they may need operator interaction. If a script can not
be executed automatically, the operator is asked if she wants to execute the adaptation
anyway through an IAdaptationEventListener instance. This listener is set from outside
and may access a command-line interface, a web interface or in any other way communi-
cate with the operator. If the operator decides to continue, all adaptation actions that can
be performed automatically will be executed and in case of a failure or of an action which
can not be executed automatically, the operator is prompted to perform the operation.

The adaptation actions are executed on the cloud provider’s infrastructure through
a middleware. For Java, there are only a few candidates as a middleware with Apache
jclouds being the most mature. It supports more than 40 cloud providers at the time of
writing. Therefore we chose to implement our approach on the basis of jclouds. However
our architecture allows an easy exchange of the middleware by adapting the execution
scripts. Once the adaptation is complete, the application is in the target state and the
MAPE loop begins again.

41

7 Evaluation

To be able to answer the research questions posed in Sec. 1.3, we evaluate our approach
in this section. The evaluation is divided into four main parts. The �rst part describes the
general evaluation design and is found in Sec. 7.1. The second part in Sec. 7.2 evaluates the
accuracy and the scalability of the base model transformation. In Sec. 7.3, the adaptation
calculation and planning are evaluated. Finally, in Sec. 7.4, the adaptation execution is
evaluated.

7.1 Evaluation Design

As the basis for evaluating our approach, we use the research questions presented in Sec-
tion 1.3 to derive an evaluation design. The evaluation therefore focuses on the accuracy
and scalability of the adaptation planning and execution stages. All experiments are con-
ducted on a virtual machine with 4 virtual CPUs, 22 GB of RAM running a Linux operating
system. This setup was chosen, because our approach would probably be deployed in a
cloud environment as well and run on a virtual machine with similar hardware. The host
system is an Intel Core i7-6820HQ CPU with 8 logical cores, 2.7 GHz and 32 GB RAM.

As an example for virtual machine instances for the accuracy evaluations, we use two
instance types, m3.large and m4.2xlarge, from Amazon’s Elastic Compute Cloud (EC2)
in the presented scenarios. We use this cloud provider as an example because of it’s
widespread use and the adoption of it’s APIs by other cloud providers. The two in-
stance types were chosen because of their hardware and costs. At the time of writing,
the m3.large type has a dual core processor with 2.6 GHz processing rate at costs of 0.15$
per hour. This type represents a resource container with low costs and low performance.
The m4.2xlarge has an octa core processor with 2.4 GHz processing rate at costs of 0.48$
per hour. It represents a resource container with high costs and high performance. We
chose only two types, because it is su�cient to use two distinct types as a minimal exam-
ple for multiple types.

During the evaluation, we do not evaluate the optimization results of PerOpteryx and
suppose that it always �nds a pareto-optimal candidate. Therefore, the evaluation is di-
vided into three parts. This separation is necessary, because it would be di�cult to sep-
arate the contributions of each step due to the interdependencies between them and the
optimization from PerOpteryx in between. The evaluation is structured according to the
order in which the steps are performed in the iObserve pipeline. It is su�cient to evaluate
each part independently, because iObserve only adds the connection of the steps which
has no in�uence on the accuracy and only introduces a small constant o�set on the time
for the scalability evaluation. Therefore, we evaluate the accuracy and scalability of each
step in our approach separately. Furthermore, this enables us to pinpoint existing prob-

43

7 Evaluation

lems more accurately to the speci�c steps where they occur. The �rst part in Sec. 7.2
evaluates the transformation of the input model into the base model that is handed over
to PerOpteryx for the design space exploration. An evaluation of PerOpteryx is given in
[26]. The second part in Sec. 7.3 evaluates the planning of the adaptation steps based on
the optimized model. In Sec. 7.4 the execution of the planned steps is evaluated as the
last part.

7.2 Base Model Extraction

The base model transformation is the preprocessing step an input model has to go through
before it can be used to optimize the deployment. To answer the research questions, we
evaluate this step of the extended iObserve pipeline according to it’s accuracy and it’s
scalability. In Sec. 7.2.1, the accuracy is evaluated and in Sec. 7.2.2, we evaluate the
scalability of this step.

7.2.1 Accuracy

The accuracy of the input model transformation into the base model is an important as-
pect of our approach and is needed to answer the research question RQ-1.1. The overall
accuracy of our approach can be guaranteed if each individual step is performed accu-
rately. For our approach it is therefore su�cient to show, that the model which is used as
an input for PerOpteryx is re�ecting the current runtime model and accurately describes
the available degrees of freedom, costs and computing resources of each resource con-
tainer. Therefore we want to show that the model transformation introduced in Sec. 5.1.2
is capable of doing this.

Because the transformation focuses on grouping replicated allocations and the respec-
tive resource containers, we focus our evaluation on cases where replications are absent or
present. These are the only cases where our algorithm steps in. Therefore, we evaluate the
accuracy of the transformation by using the following scenarios, which are loosely based
on the changes at runtime mentioned in Heinrich et al. (2016, [18]). For each scenario,
we describe the current model and the expected output model after the transformation.

As a metric to evaluate the accuracy of the transformation, we use the Jaccard coe�-
cient as a measure of the similarity between the models. The Jaccard coe�cient is an easy
to calculate similarity metric for unordered sets and therefore a good choice for this task.
Other metrics like Kendall’s rank correlation coe�cient [21] or Spearman’s rank corre-
lation coe�cient are not a good �t, because there is no need to compare the order of the
model elements. The PCM resource environment, allocation and system model have no
concept of an order for their elements and we only look at these models for the accuracy.

To use the Jaccard coe�cient, we consider the model elements of the PCM resource
environment, allocation and system model as elements in a set. For assessing the equality
of two model elements, we compare all attributes of the elements, except their names
and IDs, because these attributes can di�er for newly generated elements. The Jaccard
coe�cient is de�ned as follows, with A and B being the sets that are to be compared.

JC (A,B) = |A∩B |
|A∪B |

44

7.2 Base Model Extraction

Scenario 1: No Replications

This scenario addresses the case when no component in the input model is replicated,
but some components are deployed onto resource containers of the same type. It demon-
strates the ability to recognize that there are no replicated components. Additionally,
it demonstrates that unused resource container types are added to the model so that the
components can be allocated to any resource container type during the subsequent design
space exploration.

The supermarket chain just recently decided to move their business information system
CoCoME into the cloud and used just one virtual machine per top-level component to
test the feasibility. Now the chain wants to increase the load on the application and starts
to optimize the deployment. This change re�ects the runtime change of an increasing
workload.

Initial model: The components TradingSystem:Inventory, which includes the ServiceAdapter
component, WebService:Inventory and Web are each allocated onto an instance of
the resource container type m4.2xlarge. The WebService:CashDesk, TradingSystem:
CashDeskLine and External:Bank components are allocated onto an instance of the
resource container type m3.large. The corresponding allocation model is depicted
in Fig. 7.1.

Expected transformedmodel: All components are still allocated onto their respective re-
source containers as in the current model. For each component a new resource
container is created. This container uses a di�erent instance type than the one
onto which the component is currently allocated. For example, if the component is
currently allocated onto a resource contaiern of type m3.large, the newly created re-
source container will have the typem4.2xlarge. Additionally, for each newly created
container, the processing resource speci�cations and costs are set in the resource
environment and cost model as de�ned by it’s instance type. For each resource
container in the resource environment there exists a new ResourceContainerRepli-
cationDegree to allow it’s replication during the optimization phase. This degree is
needed to span the design space for PerOpteryx.

The model resulting from the transformation has a Jaccard coe�cient of 1.0, when
compared to the expected model, including the generated degrees of freedom, costs and
resource speci�cations. Therefore, all model elements are equal with respect to this metric
and the transformation is accurate for this scenario.

Scenario 2: Simple Replicated Components

This scenario addresses the case where some components in the input model are repli-
cated and some components are co-allocated with other components. It demonstrates
the reduction of all replicated allocations of one component to it’s base case with only
one allocation on one resource container of the correct type. Moreover, it demonstrates
the ability to distinguish between resource container types that are instantiated multi-
ple times but with di�erent allocated components and between types that are used to
replicate a component.

45

7 Evaluation

Figure 7.1: The initial allocation model of scenario 1.

Figure 7.2: The resulting allocation model of scenario 1 after the transformation. The
names of the resource containers have been shortened for better readability.

46

7.2 Base Model Extraction

Figure 7.3: The initial allocation model of scenario 2.

The last adaptation resulted in the replication of the TradingSystem:Inventory and the
TradingSystem:CashDeskLine components due to an increased load, which was caused
by a big sales campaign. Now the sales campaign is over and the optimization is to be
executed again to �nd a more cost-e�cient deployment with the decreased load.

Current model: The components TradingSystem:Inventory and TradingSystem:CashDeskLine
are each allocated onto two instances of the resource container type m4.2xlarge and
the Web component is allocated onto one instance of the same type. All other com-
ponents are allocated onto one instance of the resource container type m3.large.
The corresponding allocation model is depicted in Fig. 7.3.

Expected transformedmodel: Each of the components TradingSystem:Inventory, TradingSys-
tem:CashDeskLine andWeb is allocated to one resource container of the typem4.2xlarge
and there is one resource container of the type m3.large with no allocations on it for
each of those components. All other components are each allocated on one resource
container of the type m3.large, with an additional unallocated resource container
of the type m4.2xlarge present. For each component there is a new AllocationDe-
gree which allows the allocation of the component onto every resource container
in the resource environment. Additionally, for each newly created container, the
processing resource speci�cations and costs are set in the resource environment
and cost model as de�ned by it’s instance type. For each resource container in the
resource environment there exists a new ResourceContainerReplicationDegree to al-
low it’s replication during the optimization phase. This degree is needed to span
the design space for PerOpteryx.

The model resulting from the transformation has a Jaccard coe�cient of 1.0, when
compared to the expected model, including the generated degrees of freedom, costs and
resource speci�cations. Therefore, all model elements are equal with respect to this metric
and the transformation is accurate for this scenario.

Scenario 3: Co-allocated And Replicated Components

This scenario addresses the case where all components are allocated and replicated onto
the same resource container type. It demonstrates the ability to correctly recognize co-
allocated components even when using the same resource container type.

47

7 Evaluation

Figure 7.4: The resulting allocation model of scenario 2 after the transformation. The
names of the resource containers have been shortened for better readability.

48

7.2 Base Model Extraction

Figure 7.5: The initial allocation model of scenario 3.

We now assume that the last adaptation resulted in a consolidation of the CoCoME de-
ployment, allocating all components onto one resource container type, with two replicas.
Now a new store opens and the optimization process is started, so the application is able
to satisfy it’s performance requirements with the new store attached.

Current model: All components are allocated together onto two instances of the resource
container type m3.large. The corresponding allocation model is depicted in Fig. 7.5.

Expected transformedmodel: All components are allocated together onto one instance of
the resource container type m3.large. There are �ve additional resource containers
of the type m3.large, one for each component, as well as six resource containers of
the type m4.2xlarge. For each component there is a new AllocationDegree which al-
lows the allocation of the component onto every resource container in the resource
environment. Additionally, for each newly created container, the processing re-
source speci�cations and costs are set in the resource environment and cost model
as de�ned by it’s instance type. For each resource container in the resource environ-
ment there exists a new ResourceContainerReplicationDegree to allow it’s replication
during the optimization phase. This degree is needed to span the design space for
PerOpteryx.

The model resulting from the transformation has a Jaccard coe�cient of 1.0, when
compared to the expected model, including the generated degrees of freedom, costs and
resource speci�cations. Therefore, both models are equal with respect to this metric and
the transformation is accurate for this scenario.

7.2.2 Scalability

With research question RQ-1.2 we want to evaluate the scalability of the adaptation plan-
ning process. The �rst part to answering this question is to evaluate the scalability of the
model transformation. The parameters that in�uence the execution time of the transfor-
mation are the following.

T: Number of instance types available in the cloud pro�le

49

7 Evaluation

Figure 7.6: The resulting allocation model of scenario 3 after the transformation. The
names of the resource containers have been shortened for better readability.

C: Number of allocated components in the model

We �rst evaluate the scalability of both parameters separately by generating models
with 10, 100, 1.000 and 10.000 allocated components or instance types respectively. For
this scenario, it would not make sense to start with only 1 allocation context or 1 instance
type. It would only evaluate the time it takes to load the model from disk, as the algo-
rithm would not be doing much as there would be no replications or di�eren allocation
groups. The number of resource containers in the model is kept constant at 100 and all
components are allocated onto a random resource container, which is of a randomly cho-
sen type. We chose 10000 allocated components as the upper limit, because this should
be a su�ciently high number for most applications, given that an application like the
content-delivery network of the Net�ix video streaming service uses around 5000 servers
[31]. We assume the number of instance types per cloud provider to be at around 100.
This means, we represent an estimated 100 cloud providers with a total of 10000 instance
types, which is su�cient for most applications.

To create the resource environment for the transformed model, our algorithm has to
create a maximum of T · C resource containers. Therefore we evaluate scaling both of
these parameters together. For the evaluation, we generate models with 10, 100, 1.000
and 10.000 allocated components, each allocated on a random resource container and the
same number of resource container types in the cloud pro�le.

We use the average time it takes for 5 executions of the base model transformation to
evaluate the scalability of our approach. We chose this metric to compensate for runtime
e�ects of the Java Virtual Machine like garbage collection. The number of repetitions is
enough to average out such e�ects.

The results of our evaluation are shown as a graph in Fig. 7.7. We use a logarithmic
scaling for both axes of the graph, where the y-axis shows the average execution time

50

7.2 Base Model Extraction

1

10

100

1,000

10,000

100,000

1,000,000

10 100 1000 10000

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
(m

ill
is

ec
o

n
d

s)

Number of Elements

Scalability Transformation

Allocation Contexts Types Combined

Figure 7.7: Results of the scalability measurements for the base model extraction.

in milliseconds and the x-axis the number of elements for the speci�c parameter. The
orange line shows the average execution times when varying the number of allocation
components in the allocation model, the gray line the same when varying the number of
instance types and the yellow line for varying both numbers simultaneously. All other
graphs in the evaluation are structured similarly.

The measured times for the scaling of allocation contexts are shown in Table 7.1, the
times when scaling the instance types are shown in Table 7.2 and the times for scaling
both parameters combined are displayed in Table 7.3. In these tables, the times measured
for each execution are shown in milliseconds and the average time is shown in the last
column.

As can be seen from the graph, the runtime of our approach increases linearly when in-
creasing the number of allocated components or the number of instance types separately.
When scaling both together, however, we encountered problems regarding the memory
usage. A model with 1000 allocated components and 1000 instance types already uses
more than the available 22GB of memory, because the design decision model that is being
built needs that memory. This is due to the fact that in this model, there is an alloca-
tion degree for each allocation group. This means there are 1000 allocation degrees in
the case of 1000 allocation groups, and one resource container replication degree for each
resource container. Because there are 1000 allocation groups and 1000 instance types, the
transformation will create 1000000 resource containers. The created allocation degrees
need to reference all resource containers as possible deployment options. Therefore, the
memory usage of the design decision model is in O (n2 ·m), with n the number of allo-

51

7 Evaluation

cation groups and m the number of instance types. This means, that the memory usage
grows rapidly, practically limiting the number of possible resource containers in the re-
source environment. However, this limit is hard to reach for a normal application, mainly
because the use of 1000 instance types implies using 10 cloud providers with an average
of 100 available instance types each, which is much more than most applications would
need.

As can be seen from the results for scaling the number of allocation contexts or instance
types separately, our approach scales as expected in a linear way, although the e�ect of
the memory consumption can be seen when scaling up the instance types. For 10000
instance types, the design decision model is already at a size of 26 GB, which is more
than the available memory. Therefore the operating system starts to swap out parts of
the model, which leads to a slower execution of the transformation in this case.

To answer research question RQ-1.2 for this part of the evaluation, we can conclude
that our approach scales linearly with the number of allocation contexts or instance types,
if they are increased separately. However, when increasing them simultaneously, the
structure of the design decision model results in a very high memory consumption, so
we could not determine the behavior of our approach for a larger number of allocation
contexts and instance types. For most applications, however, this limitation will not be
an issue.

7.3 Adaptation Calculation and Planning

The calculation and planning of adaptation steps is done to derive the adaptation actions
that are necessary to transform the current application architecture into the optimized
target architecture. The accuracy of this step is evaluated in Sec. 7.3.1 and in Sec. 7.3.2
we evaluate the scalability of our approach.

7.3.1 Accuracy

To answer RQ-1.1, the accuracy of the complete planning process has to be evaluated.
The �rst step to do this, is to evaluate the accuracy of the base model transformation,
which is done in Sec. 7.2. The next step is to evaluate the accuracy of the adaptation
calculation and planning steps. We evaluate both steps at once because they are closely
related. The planning step can only be accurately performed if the preceding calcula-
tion was accurate. The available adaptation actions are de�ned in the Systemadaptation
metamodel, see Section 5.2.1.

We evaluate the accuracy of these steps by using scenarios which re�ect the structural
changes at runtime in Heinrich (2016, [18]). Therefore our scenarios have to cover the
following changes.

• Migration of a component

• Replication of a component

• Dereplication of a component

52

A
llo

ca
tio

n
Co

nt
ex

ts
Av

er
ag

e
10

10
17

.2
5

10
48

.9
3

10
02

.6
8

10
61

.0
9

11
03

.5
7

10
46

.7
0

10
0

77
71

.8
2

76
35

.0
7

68
44

.9
4

71
49

.7
9

72
37

.2
2

73
27

.7
7

10
00

12
16

23
.6

7
11

81
07

.4
8

12
29

52
.2

6
12

79
50

.0
0

11
73

78
.4

8
12

16
02

.3
8

10
00

0
27

93
50

.4
0

27
04

73
.1

7
26

46
99

.0
1

26
94

33
.2

4
26

87
82

.7
8

27
05

47
.7

2

Ta
bl

e
7.

1:
Ti

m
es

m
ea

su
re

d
in

m
ill

is
ec

on
ds

fo
rs

ca
lin

g
th

e
nu

m
be

ro
fa

llo
ca

tio
n

co
nt

ex
ts

.

In
st

an
ce

Ty
pe

s
Av

er
ag

e
10

11
91

.4
9

13
12

.3
5

15
22

.5
5

10
79

.5
6

12
72

.8
1

12
75

.7
6

10
0

65
99

.5
3

67
48

.6
1

65
37

.4
1

67
62

.9
2

70
09

.8
0

67
31

.6
5

10
00

53
59

2.
67

53
61

2.
99

50
65

0.
12

53
48

1.
61

51
84

9.
88

52
63

7.
45

10
00

0
96

50
97

.0
4

84
72

39
.2

3
86

84
42

.4
1

86
96

95
.3

5
86

26
40

.8
1

88
26

22
.9

7

Ta
bl

e
7.

2:
Ti

m
es

m
ea

su
re

d
in

m
ill

is
ec

on
ds

fo
rs

ca
lin

g
th

e
nu

m
be

ro
fi

ns
ta

nc
e

ty
pe

s.

Co
m

bi
ne

d
Av

er
ag

e
10

62
8.

58
64

6.
22

59
9.

06
58

6.
04

65
1.

94
62

2.
37

10
0

87
28

.8
3

79
37

.2
0

74
14

.1
0

76
55

.9
4

78
17

.0
6

79
10

.6
3

10
00

-
-

-
-

-
-

10
00

0
-

-
-

-
-

-

Ta
bl

e
7.

3:
Ti

m
es

m
ea

su
re

d
in

m
ill

is
ec

on
ds

fo
rs

ca
lin

g
th

e
nu

m
be

ro
fa

llo
ca

tio
n

co
nt

ex
ts

an
d

in
st

an
ce

ty
pe

ss
im

ul
ta

ne
ou

sly
.

7 Evaluation

• Allocation of a component

• Deallocation of a component

The replication and de-replication cases are special cases which are mapped to an ac-
quire and an allocate action for replication. Dereplication is mapped to a deallocate and a
terminate action. To evaluate the accuracy, we therefore employ the following scenarios
which cover all possible changes at runtime. After each scenario, we describe the cor-
responding reference adaptation plan that is compared against the actual output of the
adaptation planning process. For comparing the output and the reference model, we use
the Jaccard coe�cient as a measurement of equality of both sets. Because the order of the
actions is important, we also employ Spearman’s rank correlation coe�cient to measure
the similarity regarding the ordering of the lists. The order of the actions in the reference
adaptation plan is given by the considerations in Sec. 5.3. Spearman’s rank correlation
coe�cient is computed as follows.

SRCC (L1,L2) = 1 − 6
∑
e ∈E (rank (L1,e)−rank (L2,e))

2

n(n2−1)

Scenario 1: Migration

This scenario addresses the increase of a workload on the application and the subsequent
migration of components on new resource containers. It demonstrates the ability to plan
the migration of components.

The supermarket chain just recently decided to move their system into the cloud and
used just one virtual machine to test the feasibility. Now the chain decides to use a store
with 10 cash desks as a front-runner to further test the application.

Runtimemodel: All components of CoCoME are deployed onto one resource container
of the type m3.large.

Target model a�er optimization: The TradingSystem:CashDeskLine,WebService:CashDesk
and External:Bank components are deployed on one container of the type m3.large.
The Web component is allocated on another container of the type m3.large. The
TradingSystem:Inventory andWebService:Inventory components are allocated on an-
other container of the type m3.large.

Reference Adaptation Plan

1. Acquire Action: Acquire a new instance of type m3.large

2. Acquire Action: Acquire a new instance of type m3.large

3. Migrate Action: Migrate the Web component to the �rst newly acquired m3.large
resource container.

4. Migrate Action: Migrate the TradingSystem:Inventory component to the second
newly acquired m3.large resource container.

54

7.3 Adaptation Calculation and Planning

Figure 7.8: The resulting adaptation plan for scenario 1.

5. Migrate Action: Migrate the WebService:Inventory component to the second newly
acquired m3.large resource container.

The actually derived adaptation plan for this scenario is shown in Fig. 7.8. The Jac-
card coe�cient for this plan is 1.0, indicating that the planned adaptation actions are the
same as in the reference adaptation plan. The Spearman rank correlation coe�cient is
0.9, indicating a strong correlation. This value is below 1, because there are only �ve ob-
servations and two observations di�er in their position. This di�erence in position is not
relevant in this case, because the di�ering observations are both migrate actions which
swapped their position. This swapping of positions within a group does not a�ect the
execution of the adaptation plan. Therefore, we conclude that the adaptation planning
for this scenario is accurate, except for irrelevant changes in the execution order within
the same group of adaptation actions.

Scenario 2: Replication, Acquisition, Allocation

With this scenario we address the replication of components following an increased work-
load. Because replication is seen as the sequence of an acquisition followed by an alloca-
tion, these cases are addressed with this scenario as well. It demonstrates the ability to
accurately plan these steps while simultaneously also migrating components to increase
the complexity of the scenario. It also demonstrates the ability to terminate resource
containers that are no longer needed because no component is allocated on them.

The supermarket chain decides to launch a big sales campaign, leading to a rise in the
number of customers. In addition to the 10 cash desks already used in the store, 5 more
express cash desks are opened and the application has to adapt to the higher demand.

Initial model: The TradingSystem:Inventory andWebService:Inventory components are de-
ployed onto one virtual machine of the type m3.large. The TradingSystem:
CashDeskLine, WebService:CashDesk and External:Bank components are deployed
on another m3.large virtual machine. The frontend in the Web component is also
deployed on an m3.large instance.

Target model: The TradingSystem:Inventory and WebService:Inventory components are
migrated to one virtual machine of the type m4.2xlarge. The TradingSystem:
CashDeskLine, WebService:CashDesk and and External:Bank components are mi-
grated onto a m4.2xlarge virtual machine. The frontend in the Web component
is replicated on a second m3.large instance.

Reference Adaptation Plan: Scenario 2

1. Acquire Action: Acquire a new instance of type m3.large

55

7 Evaluation

Figure 7.9: The resulting adaptation plan for scenario 2.

2. Acquire Action: Acquire a new instance of type m4.2xlarge

3. Acquire Action: Acquire a new instance of type m4.2xlarge

4. Allocate Action: Allocate the Web component to a new instance of type m3.large

5. Migrate Action: Migrate the TradingSystem:Inventory component to the �rst newly
acquired m4.2xlarge instance.

6. Migrate Action: Migrate the WebService:Inventory component to the �rst newly
acquired m4.2xlarge instance.

7. Migrate Action: Migrate the TradingSystem:CashDeskLine component to the second
newly acquired m4.2xlarge instance.

8. Migrate Action: Migrate the WebService:CashDesk component to the second newly
acquired m4.2xlarge instance.

9. Migrate Action: Migrate the External:Bank component to the second newly ac-
quired m4.2xlarge instance.

10. Terminate Action: Terminate the m3.large instance from which the inventory com-
ponents were migrated.

11. Terminate Action: Terminate the m3.large instance from which the cash desk com-
ponents were migrated.

The actually derived adaptation plan for this scenario is shown in Fig. 7.9. The planned
adaptation actions are the same as in the reference adaptation plan, which is re�ected by
the Jaccard coe�cient of 1.0 for this adaptation plan. The Spearman rank correlation
coe�cient is 0.8909, indicating a strong correlation. The value below 1 is again caused by
the fact that the positions within the group of migration actions are swapped. Therefore,
we conclude that the adaptation planning for this scenario is accurate.

Scenario 3: Dereplication, Deallocation, Termination

This scenario addresses the dereplication of components following a decrease in the work-
load. Because the dereplication is mapped as the sequence of a deallocation followed by
a termination, these cases are addresses with this scenario as well. It demonstrates the

56

7.3 Adaptation Calculation and Planning

ability to accurately plan these steps while simultaneously also migrating components to
increase the complexity of the scenario.

After the sales campaign is over, the number of customers declines and the additional
5 express cash desks are closed again. The application therefore has to adapt to the de-
creased workload to optimize the costs of the deployment.

Initial model: The TradingSystem:Inventory andWebService:Inventory components are de-
ployed on one resource container of the type m4.2xlarge. The TradingSystem:
CashDeskLine, WebService:CashDesk and External:Bank components are deployed
onto a m4.2xlarge resource container. The frontend in the Web component is de-
ployed on two m3.large instances.

Target model: The TradingSystem:Inventory and WebService:Inventory components are
migrated onto one resource container of the type m3.large. The TradingSystem:
CashDeskLine andWebService:CashDesk components are migrated onto anotherm3.large
virtual machine. The frontend in the Web component stays deployed on only one
m3.large instance and the other m3.large instance is dereplicated.

Reference Adaptation Plan: Scenario 3

1. Acquire Action: Acquire a new instance of type m3.large

2. Acquire Action: Acquire a new instance of type m3.large

3. Migrate Action: Migrate the TradingSystem:Inventory component to the �rst newly
acquired m3.large instance.

4. Migrate Action: Migrate the WebService:Inventory component to the �rst newly
acquired m3.large instance.

5. Migrate Action: Migrate the TradingSystem:CashDeskLine component to the second
newly acquired m3.large instance.

6. Migrate Action: WebService:CashDesk component to the second newly acquired
m3.largeinstance.

7. Migrate Action: Migrate the External:Bank component to the second newly ac-
quired m3.large instance.

8. Deallocate Action: Deallocate the Web component from the replicated m3.large in-
stance.

9. Terminate Action: Terminate the m4.2xlarge instance from which the inventory
components were migrated.

10. Terminate Action: Terminate the m4.2xlarge instance from which the cash desk
components were migrated.

57

7 Evaluation

Figure 7.10: The resulting adaptation plan for scenario 3.

11. Terminate Action: Terminate the m3.large instance to which the web component
was replicated.

Fig. 7.10 depicts the derived adaptation plan for this scenario. For this adaptation
plan, the Jaccard coe�cient is 1.0 and shows that the actions are the same for the derived
plan and the reference plan. The Spearman rank correlation coe�cient is 0.9545, which
indicates a strong correlation. Here the positions within the migration actions and the
termination actions di�er slightly, which results in the value below 1. This is, however,
as mentioned before not a problem for the adaptation execution. Therefore, we conclude
that the adaptation planning for this scenario is accurate.

7.3.2 Scalability

To evaluate the scalability of the complete planning process and answer research question
RQ-1.2, we evaluate the scalability of the adaptation calculation and planning as the
second part.

The important parameter for evaluating the adaptation calculation and planning is the
number of adaptation actions that have to be calculated and ordered. To get to a spe-
ci�c number of adaptation actions, we use one generated initial model and generate a
derived model with random adaptations. The concrete type of adaptation actions which
is used is not relevant for the scalability, because no action requires special computations
when calculating or ordering it. Therefore we uniformly distribute the number of overall
adaptation actions onto all available action types and generate the derived model.

We chose to evaluate the scalability by using target models with 10, 100, 1000 and
10000 adaptation actions. We chose to omit a target model with 1 adaptation action,
because the time taken to load the model from disk would distort the measurements in
this case. These adaptation actions are generated on the basis of a valid generated model
with no semantic meaning. We use a tool to derive a modi�ed model with the speci�ed
number of adaptation actions. The derived model is again a valid model and therefore
these two models form a valid basis for the evaluation of our approach. As mentioned
in Sec. 7.2.2, 10000 adaptation actions involving at least the same number of resource
containers is more than the majority of applications would require. For our evaluation,
we use the average time it takes for 5 executions of the adaptation planning to evaluate
the scalability of our approach. Again, we chose this metric to compensate for runtime
e�ects of the Java Virtual Machine.

In Fig. 7.11, the results of the evaluation are shown as a graph and the underlying mea-
surements can be seen in Table 7.4. The graph shows that our approach is performing very

58

7.4 Adaptation Execution

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

10 100 1000 10000

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
(m

ill
is

ec
o

n
d

s)

Number of Actions

Scalability Calculation

Adaptation Actions

Figure 7.11: Results of the scalability measurements for the adaptation calculation.

well for up to 1000 adaptation actions, where it needs even less time than expected, when
looking at the execution time for 10 adaptation actions. For 10000 adaptation actions,
however, the execution time increases sharply. Further investigation revealed that more
than 60% of the time is spent loading the original model and the target model from disk,
whereas less than 40% of the time is spent in the planning algorithm itself. We there-
fore conclude that the adaptation planning algorithm itself scales linearly, as expected,
although the loading of the models is an issue for the performance.

However, when considering the absolute values, the time for planning the execution of
10000 adaptation actions is still inO (n), with n the number of adaptation actions. With an
average execution time of 758.58 ms for 10 adaptation actions, it could be expected that the
execution time for 10000 adaptation actions is at about 750000 ms. Therefore the actual
average execution time of 388475.95 ms is in an acceptable range. With these results, we
can answer this part of the research question RQ-1.2. The adaptation calculation step
scales linearly with the number of adaptation actions.

7.4 Adaptation Execution

We evaluate the adaptation execution in order to answer the research questions RQ-2.1
and RQ-2.2. First, we evaluate the accuracy of our approach in Sec. 7.4 and we conclude
this section by evaluating the scalability of our approach in Sec. 7.4.2.

59

A
da

pt
at

io
n

A
ct

io
ns

Av
er

ag
e

10
61

3.
66

70
9.

80
78

5.
39

86
1.

58
82

2.
48

75
8.

58
10

0
20

62
.8

2
15

80
.6

7
15

54
.4

5
14

48
.2

6
15

00
.0

3
16

29
.2

4
10

00
70

81
.1

4
70

01
.6

5
72

87
.4

0
73

70
.1

3
72

95
.8

5
72

07
.2

3
10

00
0

38
33

64
.2

4
38

86
08

.0
8

39
59

89
.8

8
39

09
71

.4
3

38
34

46
.1

0
38

84
75

.9
5

Ta
bl

e
7.

4:
Ti

m
es

m
ea

su
re

d
in

m
ill

is
ec

on
ds

fo
rs

ca
lin

g
th

e
nu

m
be

ro
fa

da
pt

at
io

n
ac

tio
ns

w
he

n
pl

an
ni

ng
th

e
ad

ap
ta

tio
ns

.

A
da

pt
at

io
n

A
ct

io
ns

Av
er

ag
e

10
11

.4
2

11
.6

4
17

.3
3

14
.9

4
14

.2
0

13
.9

1
10

0
45

.9
8

45
.1

1
48

.8
9

40
.8

2
36

.1
9

43
.4

0
10

00
20

4.
23

22
9.

12
18

9.
24

16
3.

40
21

9.
18

20
1.

03
10

00
0

10
72

.7
1

11
73

.5
8

11
23

.0
8

12
31

.0
2

12
12

.2
1

11
62

.5
2

Ta
bl

e
7.

5:
Ti

m
es

m
ea

su
re

d
in

m
ill

is
ec

on
ds

fo
rs

ca
lin

g
th

e
nu

m
be

ro
fa

da
pt

at
io

n
ac

tio
ns

w
he

n
ex

ec
ut

in
g

th
e

ad
ap

ta
tio

ns
.

7.4 Adaptation Execution

7.4.1 Accuracy

The accuracy with which a derived adaptation plan is executed provides an answer to
RQ-2.1. To evaluate this, we use the reference adaptation plans introduced in Sec. 7.3
which describe adaptation actions that have to be performed on the target system. These
plans already cover the set of changes at runtime for performance related adaptations.

Therefore, to evaluate the accuracy of the adaptation execution, we track the actions
that are executed by this step and compare them with the expected executions based on
the adaptation plans. The tracking is done by issuing a log statement for each executed
action. This is possible, because the adaptation plans can be mapped directly to the ex-
ecuted adaptations. Again, we employ the Jaccard coe�cient and the Spearman rank
correlation coe�cient, because they are easy to calculate and show the level of similarity
of the two lists. The Spearman rank correlation coe�cient is useful here, again because
the order of the elements in the list is used in it’s calculation. This is necessary because
here, as well as in Sec. 7.3.1, the ordering of elements in the list is important to enable the
accurate execution of adaptations.

The accuracy of the execution is shown by the Jaccard coe�cients of 1.0 for each of
the three scenarios, when compared to the reference adaptation plans. For all scenarios,
the Spearman rank correlation coe�cient is equal to the one for the adaptation planning,
resulting in a value of 0.9 for the �rst scenario, 0.8909 for the second scenario and 0.9545
for the third. This indicates that the adaptation execution is accurately executing the
adaptation plans derived from the step before.

7.4.2 Scalability

To evaluate the scalability of the adaptation execution and answer research question RQ-
2.2, we use a similar approach as with the evaluation of the scalability for adaptation
planning. The important parameter for evaluating the adaptation execution is the number
of adaptation actions that has to be performed. We assume that all adaptation actions have
the same e�ect on the scalability because, all actions only perform a constant number of
calls to the service providers interfaces.

The evaluation of the execution process’ scalability therefore relies on generated Sys-
temadaptation models with a speci�c number of adaptation actions. For our measure-
ments we exclude the execution of the calls to the cloud provider’s interfaces, as well as
the execution times of the actual scripts. Both are highly dependent on external factors
like network latency or workload on the cloud providers infrastructure. Moreover, the
execution scripts that are executed on the servers are dependent on the application and
as such not part of this thesis. Therefore we assume that these scripts behave as intended
by their engineers. Their execution times also heavily depend on the used technologies
and the hardware of the virtual machine. Therefore these steps are not evaluated.

The design of this evaluation is similar to the design in Sec. 7.3.2. We use adaptation
plans with 10, 100, 1000 and 10000 elements. These numbers cover adaptations for very
large applications and are therefore su�cient to show the scalability of our approach.
We use randomly generated adaptation actions, because the concrete type of action does
not in�uence the runtime of the execution. As a metric we use the average time it takes

61

7 Evaluation

1

10

100

1,000

10,000

10 100 1000 10000

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
(m

ill
is

ec
o

n
d

s)

Number of Actions

Scalability Execution

Adaptation Actions

Figure 7.12: Results of the scalability measurements for the adaptation execution.

for 5 executions of the adaptation planning to evaluate the scalability of our approach to
compensate for runtime e�ects of the Java Virtual Machine.

We show the results of our measurements in Fig. 7.12 and the exact values for each it-
eration as well as the average are listed in Table 7.5. The graph shows that the adaptation
execution is performed in O (n) with n being the number of adaptation actions. Because
we do not consider the execution times that result from the actual execution on the re-
source containers and from calling the cloud provider’s interfaces, the absolute values
will be higher in practice. Therefore as the answer to research question RQ-2.2, our eval-
uation shows that the adaptation execution scales linearly with the number of adaptation
actions.

62

8 Conclusion

In this thesis, we presented and evaluated our approach for automatic adaptation plan-
ning in cloud-based applications with an operator-in-the-loop using component-based
architectural models. We showed the bene�ts of using an evolutionary algorithm for the
design space exploration when optimizing the architecture of cloud-based applications
and developed an approach to integrate PerOpteryx into the MAPE loop of iObserve.
Our approach is both accurate and scalable and therefore ful�lls the goals formulated in
Sec. 1.3. To conclude this thesis, we discuss the limitations of our approach in Sec. 8.1
and point out possibilities for future work in Sec. 8.2.

8.1 Limitations

Our approach currently considers all components in one system to be independent of
each other and also to be independently deployable. This is consistent with the idea of
component-based software engineering. However, in practice it might often be useful
to specify constraints on components. For example it may be bene�cial for the WebSer-
vice:CashDesk component of CoCoME to be deployed on the same resource container as
the TradingSystem:CashDeskLine, because it results in less overhead for the communica-
tion.

Another limitation is that the approach is not able to plan adaptations according to
dependencies between them. That means if there are dependencies between two or more
components, those dependencies will not be taken into account when calculating the
order of adaptation actions. All components are again regarded as independent in this
regard.

Moreover, our approach is limited with respect to the number of instance types and
allocation contexts it supports. The evaluation showed that the current approach is not
able to handle 1000 allocation contexts and the same number of instance types in the same
model, because of the memory used in this scenario.

8.2 Future Work

During the course of this thesis, several possibilities for future work were identi�ed.
Speci�cally, we encountered some possible enhancements for the PCM and PerOpteryx
from which our approach could bene�t. Moreover, during the evaluation, we discovered
performance limitations that should be investigated further. We therefore present the
following list of open tasks for future work.

63

8 Conclusion

KAMP Integration As one alternative to the adaptation calculation, we proposed to inte-
grate KAMP into our approach. This would bene�t not only the adaptation calcu-
lation by providing information on dependencies between artifacts. It could also
provide an operator with better information about tasks that have to be done man-
ually. Therefore we propose the integration of KAMP into our approach as a further
step.

PCM Replication Model We introduced the transformation of a PCM model into it’s base
model representation, because the PCM is not built to handle replicated resource
containers. Our approach would, however, bene�t greatly from a version of the
PCM which supports some form of basic model of the application and that can be
enriched with information about replicated resource containers.

PerOpteryx Integration One of the problems discovered by our evaluation is directly re-
lated to the design decision model of PerOpteryx and could be prevented by im-
proving the way degrees of freedom are saved. Another task is to integrate Per-
Opteryx into our approach not as a call to a completely separate application, but by
directly integrating it’s source code. At the moment this is not possible because of
the dependencies from PerOpteryx to Eclipse. Therefore we propose a redesign of
PerOpteryx, to decouple it’s core functionality from Eclipse.

Artificial Neural Networks Arti�cial neural networks have been successfully employed to
explore large search spaces, for example for the board game Go. Recent research in-
dicates that it may be possible to tackle many complex tasks with such an approach
[37]. However, to the best of our knowledge, there is not a lot of research on how
to use such networks for design space exploration of architectural models.

PaaS integration We currently only support the IaaS service model for the cloud. It would
be bene�cial to also include support for the PaaS service model to be able to leverage
these types of deployments as well.

64

Bibliography

[1] Various Authors. iObserve Github Repository. url: https://github.com/research-
iobserve/iobserve-analysis%20(Last%20accessed:%20June%202017).

[2] V. R. Basili and D. M. Weiss. “A Methodology for Collecting Valid Software Engi-
neering Data”. In: IEEE Transactions on Software Engineering SE-10.6 (Nov. 1984),
pp. 728–738. issn: 0098-5589. doi: 10.1109/TSE.1984.5010301.

[3] Matthias Becker, Ste�en Becker, and Joachim Meyer. “SimuLizar: Design-Time Mod-
eling and Performance Analysis of Self-Adaptive Systems.” In: Software Engineering
213 (2013), pp. 71–84.

[4] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio Component Model
for Model-driven Performance Prediction”. In: Journal of Systems and Software 82
(2009), pp. 3–22. doi: 10.1016/j.jss.2008.03.066. url: http://dx.doi.org/10.
1016/j.jss.2008.03.066.

[5] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model
for model-driven performance prediction”. In: Journal of Systems and Software 82.1
(2009), pp. 3–22.

[6] Gordon Blair, Nelly Bencomo, and Robert B France. “Models@ run. time”. In: Com-
puter 42.10 (2009), pp. 22–27.

[7] Gerardo Canfora et al. “A framework for QoS-aware binding and re-binding of
composite web services”. In: Journal of Systems and Software 81.10 (2008), pp. 1754–
1769.

[8] Cloud Management Working Group Distributed Management Task Force. Cloud
InfrastructureManagement Interface (CIMI)Model and RESTful HTTP-based Protocol.
Aug. 2016. url: http://www.dmtf.org/standards/cloud.

[9] Andy Edmonds et al. “Toward an open cloud standard”. In: IEEE Internet Computing
16.4 (2012), pp. 15–25.

[10] Matthias Ehrgott. Multicriteria optimization. Springer Science & Business Media,
2006.

[11] Nicolas Ferry et al. “Cloud MF: Applying mde to tame the complexity of managing
multi-cloud applications”. In: Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing. IEEE Computer Society. 2014, pp. 269–
277.

[12] Nicolas Ferry et al. “Towards model-driven provisioning, deployment, monitoring,
and adaptation of multi-cloud systems”. In: 2013 IEEE Sixth International Conference
on Cloud Computing. IEEE. 2013, pp. 887–894.

65

Bibliography

[13] Greg Franks et al. “Enhanced modeling and solution of layered queueing networks”.
In: IEEE Transactions on Software Engineering 35.2 (2009), pp. 148–161.

[14] Sören Frey, Florian Fittkau, and Wilhelm Hasselbring. “Search-based genetic opti-
mization for deployment and recon�guration of software in the cloud”. In: Proceed-
ings of the 2013 International Conference on Software Engineering. IEEE Press. 2013,
pp. 512–521.

[15] Sören Frey and Wilhelm Hasselbring. “The cloudmig approach: Model-based mi-
gration of software systems to cloud-optimized applications”. In: International Jour-
nal on Advances in Software 4.3 and 4 (2011), pp. 342–353.

[16] Svend Frølund and Jari Koistinen. Qml: A language for quality of service speci�ca-
tion. Hewlett-Packard Laboratories, 1998.

[17] R Heinrich, K Rostami, and R Reussner. “The CoCoME platform for collaborative
empirical research on information system evolution”. In: Karlsruhe Reports in In-
formatics, Tech. Rep (2016).

[18] Robert Heinrich. “Architectural Run-time Models for Performance and Privacy Anal-
ysis in Dynamic Cloud Applications”. In:ACMSIGMETRICS Performance Evaluation
Review 43.4 (2016), pp. 13–22.

[19] Robert Heinrich et al. “Architectural run-time models for operator-in-the-loop adap-
tation of cloud applications”. In: (2015).

[20] Robert Heinrich et al. “Software Architecture for Big Data and the Cloud”. In: to
appear. Elsevier, 2017. Chap. An Architectural Model-Based Approach to Quality-
aware DevOps in Cloud Applications.

[21] Maurice G Kendall. “A new measure of rank correlation”. In: Biometrika 30.1/2
(1938), pp. 81–93.

[22] Anne Koziolek. Automated improvement of software architecture models for perfor-
mance and other quality attributes. Vol. 7. KIT Scienti�c Publishing, 2014.

[23] Heiko Koziolek et al. “Evaluating performance of software architecture models with
the Palladio component model”. In:Model-Driven Software Development: Integrating
Quality Assurance, IDEA Group Inc (2008), pp. 95–118.

[24] Manny M Lehman and Laszlo A Belady. Program evolution: processes of software
change. Academic Press Professional, Inc., 1985.

[25] Maksym Lushpenko et al. “Using Adaptation Plans to Control the Behavior of Mod-
els@ runtime”. In: ().

[26] Heiko Martens et al. “Automatically improve software architecture models for per-
formance, reliability, and cost using evolutionary algorithms”. In: Proceedings of the
�rst joint WOSP/SIPEW international conference on Performance engineering. ACM.
2010, pp. 105–116.

[27] Peter Mell, Tim Grance, et al. “The NIST de�nition of cloud computing”. In: (2011).
[28] Philipp Merkle and Jörg Henss. “EventSim–an event-driven Palladio software ar-

chitecture simulator”. In: Palladio Days (2011), pp. 15–22.

66

Bibliography

[29] Andreas Metzger et al. “Coordinated run-time adaptation of variability-intensive
systems: an application in cloud computing”. In: Proceedings of the 1st International
Workshop on Variability and Complexity in Software Design. ACM. 2016, pp. 5–11.

[30] Brice Morin et al. “Models at runtime to support dynamic adaptation”. In: Computer
42.10 (2009).

[31] Amy Nordrum. Researchers Map Locations of 4,669 Servers in Net�ix’s Content De-
livery Network. Aug. 2016. url: http://spectrum.ieee.org/tech-talk/telecom/
internet / researchers - map - locations - of - 4669 - servers - in - netflixs -

content-delivery-network%20(Last%20accessed:%20June%202017).
[32] Ralf Reussner et al. “The Palladio Component Model”. In: (2011).
[33] Kiana Rostami et al. “Architecture-based assessment and planning of change re-

quests”. In: 2015 11th International ACM SIGSOFT Conference on Quality of Software
Architectures (QoSA). IEEE. 2015, pp. 21–30.

[34] Misha Strittmatter et al. “A Modular Reference Structure for Component-based Ar-
chitecture Description Languages.” In: ModComp@ MoDELS. 2015, pp. 36–41.

[35] Clemens Szyperski, D Gruntz, and S Murer. “Component software: beyond object-
oriented programming. 2002”. In: ISBN: 0-201-74572-0 (2002).

[36] Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software architecture:
foundations, theory, and practice. Wiley Publishing, 2009.

[37] Fei-Yue Wang et al. “Where does AlphaGo go: from Church-Turing thesis to Al-
phaGo thesis and beyond”. In: IEEE/CAA Journal of Automatica Sinica 3.2 (2016),
pp. 113–120.

67

